Coralogix provides a scalable Prometheus-compatible managed service for time-series data. Employ our custom metric endpoint, including serverless computing and quick cURL-like calls, to send counters, gauges, and histograms to Coralogix.
Coralogix supports ingesting metrics in multiple ways. Our most common integrations are Prometheus & OpenTelemetry, as well as metric-specific integrations such as CloudWatch metrics and AWS Kinesis Firehose. View a full list of available integrations here.
This tutorial presents a series of use cases employing our custom metric endpoint, referred to as the OpenTelemetry endpoint, to send your data to Coralogix. The examples below employ gRPCurl and OpenTelemetry Java SDK.
Coralogix metrics employs the Prometheus data model, wherein metrics sent can be in the form of counters, gauges, and histograms.
If you are sending us your data using gRPCurl, you are required to have Git and gRPCurl installed.
The custom logs API implementation is based on the OpenTelemetry metric specification. This ensures that our logging implementation adheres to industry best practices and can seamlessly integrate with other components and tools in the OpenTelemetry ecosystem.
{ "resource_metrics": { "resource": { "attributes": [ { "key": "cx.application.name", "value": { "string_value": "my-test-application" } }, { "key": "cx.subsystem.name", "value": { "string_value": "my-test-subsystem" } }, { "key": "service.name", "value": { "string_value": "my-test-service" } } ] }, "scope_metrics": { "metrics": [{ "name": "grpc_sample_gauge1", "gauge": { "data_points": [{ "as_double": 0.8, "start_time_unix_nano": 1657079957000000000, "time_unix_nano": 1657079957000000000 }] } },{ "name": "grpc_sample_counter1", "gauge": { "data_points": [{ "as_int": 100, "start_time_unix_nano": 1657079957000000000, "time_unix_nano": 1657079957000000000 }] } }] } } }
Notes:
service.name
are mandatory.gRPC is a modern way of calling APIs on top of HTTP/2. Similar to cURL, gRPCurl is a command-line tool used to communicate with gRPC services.
Coralogix currently supports gRPC for its custom metrics endpoint.
Assuming the example in the data model is saved as metrics.json
, use the following command to send your data to Coralogix:
# Clone OpenTelemetry protobuf definitions git clone <https://github.com/open-telemetry/opentelemetry-proto.git> # Send metrics to Coralogix grpcurl -v -d @ \\ -rpc-header 'Authorization: Bearer <send-your-data-api-key>' \\ -proto opentelemetry-proto/opentelemetry/proto/collector/metrics/v1/metrics_service.proto \\ -import-path opentelemetry-proto \\ <open-telemetry-endpoint> \\ opentelemetry.proto.collector.metrics.v1.MetricsService/Export \\ < metrics.json
Notes:
<open-telemetry-endpoint>
, input the Coralogix OpenTelemetry endpoint associated with your Coralogix domain.<send-your-data-api-key>
, input your Coralogix Send-Your-Data API key.start_time_unix_nano
and the time_unix_nano
in the metrics.json
to a timestamp that is within the last 24 hours.The example below guides you using OpenTelemetry Java SDK to send your custom traces to Coralogix. Others SDKs may also be used.
STEP 1. Add to your maven pom.xml the following libraries:
<dependency> <groupId>io.opentelemetry</groupId> <artifactId>opentelemetry-sdk-metrics</artifactId> <version><!-- put a recent version of opentelemetry sdk here --><version> </dependency> <dependency> <groupId>io.opentelemetry</groupId> <artifactId>opentelemetry-exporter-otlp</artifactId> <version><!-- put a recent version of opentelemetry sdk here --><version> </dependency>
STEP 2. Use this code snippet to generate a counter and a gauge:
SdkMeterProvider meterProvider = SdkMeterProvider.builder() .registerMetricReader( PeriodicMetricReader.builder( OtlpGrpcMetricExporter.builder() .setEndpoint("https://<open-telemetry-endpoint>") .addHeader("Authorization", "Bearer <send-your-data-api-key>") .build() ).build() ) .setResource(Resource.create(Attributes.of( ResourceAttributes.SERVICE_NAME, "my-test-service", AttributeKey.stringKey("cx.application.name"), "my-test-application", AttributeKey.stringKey("cx.subsystem.name"), "my-test-subsystem"))) .build(); Meter meter = meterProvider.meterBuilder("test").build(); LongCounter counter = meter .counterBuilder("otlp_test_counter1") .setDescription("Processed jobs") .build(); counter.add(100); meter .gaugeBuilder("otlp_test_gauge1") .buildWithCallback(measurement -> { measurement.record(0.8); }); meterProvider.forceFlush();
Notes:
service.name
attribute is mandatory on each metric.Coralogix places a hard limit of 10MB of data to our OpenTelemetry endpoints, with a recommendation of 2MB.
Limits apply to single requests, regardless of timespan.
Documentation | Coralogix Endpoints |
External | GitHub |
Need help?
Our world-class customer success team is available 24/7 to walk you through your setup and answer any questions that may come up.
Feel free to reach out to us via our in-app chat or by sending us an email at [email protected].