Dynamic Templating

Notification Center customization is powered by the Tera templating language. Tera
enables you to create highly flexible and dynamic templates that respond to a variety of
contexts, formats, and use cases. You can use dynamic templating to personalize your
connectors, presets, and routing rules.

Global context available to all templates

All templates have access to the context variable, which contains metadata about the

notification source type, including system identifiers and trigger details. This context
allows you to dynamically customize your template content based on the notification's
origin.

_context reference

Variable Description

_context Contains metadata about the context of the
notification source type

_context.entityType The notification source type (e.g., "alerts")
_context.entitySubType The notification source subtype, if any
_context.entitylabels Notification source type labels associated with the

context (e.qg., "host", "region")

_context.system Information about the system, including its ID and
name

_context.system.id The system's unique identifier

_context.system.name The system's name (e.g., "acme-prod")

_context.trigger The trigger that initiated the notification source type

_context.trigger.automaticTr Automatic trigger details (if applicable)

igger

_context.trigger.manualTrigg Manual trigger details (e.g., user email)

er

_context.trigger.manualTrigg The email address of the user who manually triggered

er.userkmail the notification source type



Variable Description

_context.trigger.type The type of trigger that initiated the notification source
type (e.g., "manual")

Inspecting context with get_context

Use the custom get context function to view the entire template context. This is useful
for debugging and discovering available variables.

Name Type Description Usage
example
get_conte Custom Returns the entire template context as an {{
xt object, which can be used to troubleshoot get_context(
and view available variables )

Example: Using get_context for debugging

View the entire context and all variables that are available for the notification source
type.

Input

{{ get context() | json encode(pretty = true) }}

Example output

This output displays all possible variables for this alert notification source in a readable
JSON format:

_context": {
"entityType": "alerts",
"entitySubType": "metricThresholdMoreThanTriggered",
"entityLabels": {},
"trigger": {
"type": "manual",
"manualTrigger": {

"userEmail": "user@email.com"

}’

"automaticTrigger": null




"system": {
"id": "17266",
"name": "onlineboutique"
}
},
"alert": {
"timestamp": 1638403600,
"id": "497f6eca-6276-4993-bfeb-53cbbbba6f08",
“status": "Triggered",
"groups": [
{
"status": "Triggered",
"priority": "P1",
"keyValues": {
"host": "serverl"
}
"details": {
“$type": "metricThreshold",
"metricThreshold": {
"conditionType": "More than threshold",
"fromTimestamp": 1638400000,
"toTimestamp": 1638403600,
"maxValueOverThreshold": 95,
"minValueOverThreshold": 85,
"avgValueOverThreshold": 90,
"pctOverThreshold": 90,

"isUndetectedValue": false

"alertDef": {

"name": "CPU Utilization Alert",

"description": "An alert for monitoring CPU utilization.",
"entityLabels": {

"environment": "production",

"region": "us-west"




This gives you a complete snapshot of the current data available for the alert, which can
be useful for debugging and customizing notifications.

Filters

Filters let you transform data, manipulate variables, or format strings, numbers, and
dates. These can be used to clean up or format data to fit your notification needs.

Name Type Description Usage
Example
json_escap Custom Converts an object to a JSON string {{
e
date Built-in Converts a timestamp into a {{
formatted date string 1616346000
default Built-in Returns a default value if the variable “{{ value
is undefined

Example: Using json_escape foroutput

If you need to display a complex object as a string, use the json_escape filter:

Input

{{ get context() json escape }}

Example output
This transforms any value into its JSON string representation:
{\" context\"

{\"entityType\":\"alerts\",\"entitySubType\":\"metricThresholdMoreThanTrigger
+r

Example: Formatting dates with the date filter

The date filter allows you to format timestamps for easier readability. Here’s an
example of how to use it:

Input

{{ alert.timestamp date(format="%Y-%m-%d %H:%M") }}




We detected a change in the values for the following hosts:

{% for i in alert.groups %}

{{ i.priority }} / {{ i.keyValues | json escape }} / {{
i.details.metricThreshold.fromTimestamp | date(format="%Y-%m-%d %H:%M") }}
{% endfor %}

Example output

2021-12-02 00:06

We detected a change in the values for the following hosts:
P1 / {"host": "serverl"} / 2021-12-01 23:06

Example: Using default to handle missing values

The default filter helps you provide fallback values if a variable is missing or undefined:

Input

{{ alertDef.entitylLabels.myVal | default(value="no value") }}

Example Output

no value

Variables

Variables refer to the dynamic data or objects that are available within the template's
execution context. Coralogix supports the context variable, containing metadata
about the context of the notification source type. For alerts, this includes source type,
trigger details, and system information.

Example 1: To view the context
Input

{{ get context() | json encode(pretty = true) }}

Example output

Displays the entire alert context in a nicely formatted JSON object.



Example 2: Viewing the context directly
Input

{{ _context }}

Example output

alerts

Example 3: Accessing a specific field in the context ( entitySubType )

Input

{{ _context.entitySubType }}

Example output

logsThresholdMoreThanTriggered

Example 4: Viewing the system context

Input

{{ context.system | json encode(pretty = true) }}

Example output

"id": "17266",

"name": "onlineboutique"

The output consists of your Coralogix team ID and team name.

Example 5: Viewing the trigger details
Input

{{ context.trigger | json encode(pretty = true) }}




Example output

This output displays what triggered the notification, showing whether it was manual or
automatic:

“type": "manual",
"manualTrigger": {

"userEmail": "user@email.com"

}

"automaticTrigger": null

In this example, a manual trigger was used by a user.

Tips for troubleshooting and debugging

o Use get_context() to view all available variables: This is especially useful when
you’'re working with custom variables or trying to figure out which data is available
in the template context.

e Use json_encode or json_escape to format data: When working with complex
objects, these filters can help you convert them into a readable format, which is
helpful for debugging.

e Check for undefined variables: Always use the default filter to provide fallback

values in case a variable is missing from the alert context. This ensures that
notifications are always delivered.

Practical examples for alert notification source type

Below are examples of how to use the functions, filters, and variables to customize your
notifications effectively. These examples show how to incorporate dynamic values,
handle conditional logic, and format the content to make your alerts more informative.
The examples include alerts notification source type schema, which can be found here.

Using variables in alert names & descriptions

You can include dynamic variables in an alert’s name or description to propagate them
into your notification content. For example:

Alert has triggered for subsystem

{{alert.groups[0].keyValues|['coralogix.metadata.subsystemName']}}



https://coralogix.com/docs/user-guides/alerting/configure-notifications/source-type-schema/

Date formatting

Alert timestamps are typically in Epoch format (e.g., 1735655158 ). You can use the date
function to convert these to human-readable format:

Example: {{alert.timestamp | date(format="%Y-%m-%d %H:%M")}}

This converts an Epoch timestamp (e.g., 1638403600 ) into a readable format like
2021-12-02 00:06 .

Example: {{alert.timestamp | date(format="%Y-%m-%d %H:%M")}}

This converts an Epoch timestamp (e.g., 1638403600 ) into a readable format like
2021-12-02 00:06 .

By leveraging these functions, filters, and variables, you can create customized,
informative alerts tailored to your specific notification needs.

Example 1: Conditional alert handling based on alert definition name

This example customizes the notification content based on the alert definition name. It
checks the alert type and formats the message accordingly:

{% if alertDef.name == "RDS Instance Low CPU" %}
affected db: {{alert.groups[0].keyValues.DBInstanceldentifier}}

credit balance is below: {{i.condition.threshold}}

owning team: {{alert.groups[0].keyValues.Team}}

{% elif alertDef.name == 'OOM killed pod' %}
pod: {{alert.groups[0].keyValues.k8s pod name}}

container: {{alert.groups[0].keyValues.k8s container name}}

% else %}

{{alertDef.name}} is triggering

{% endif %}

This conditional logic allows the notification to dynamically change depending on the
alert's name:

e For "RDS Instance Low CPU", it includes the affected database identifier and the
team responsible for the alert.

e For "OOM killed pod", it includes the pod and container names.

o If neither condition is met, it simply outputs the alert's name.

e For "RDS Instance Low CPU", it includes the affected database identifier and the
team responsible for the alert.



e For "OOM killed pod", it includes the pod and container names.

e If neither condition is met, it simply outputs the alert's name.

Example 2: Logs threshold alert description

This example formats a notification for a log threshold alert, displaying detailed
information about the alert and its associated values. This template includes detailed
information about the alert, such as the priority, affected values, thresholds, and the
specific rules that caused the alert.

{{alert.timestamp | date(format="%Y-%m-%d %H:%M")}}

We've detected that the query result has dropped below the threshold for
the following values of {{alertDef.groupByKeys}}:

Priority / Values / Threshold / Start Time / End Time

{% for i in alert.groups %}

{{i.priority}} / {{i.keyValues | json escape}} /
{{i.details.logsThreshold.fromTimestamp | date(format
/ {{i.details.logsThreshold.toTimestamp}}

{% endfor %}

Alert Query:
{{alertDef.typeDefinition.logsThreshold.luceneQuery}}

Alert Condition Rules:

Condition type - {{
alertDef.typeDefinition.logsThreshold.rules[0].condition.conditionType }}
Condition rules -

{% for i in alertDef.typeDefinition.logsThreshold.rules %}

Threshold: {{i.condition.threshold}}, timeframe:
{{i.condition.timeWindow.logsTimeWindowSpecificValue}}.

{% endfor %}

@jane.doe
@here

e |t uses the date filter to format timestamps and json escape to ensure the output is
safe for ]SON.

e Note also that Jane Doe and all channel users are tagged as part of this Slack
notification.




Example 3: Grouping by service

If your alert is grouped by service, you can include dynamic information related to the
affected service. Here’'s an example where the group-by key is service name :

"alert url": "https://teamname-
prod.app.eu2.coralogix.com/#/alerts/{{alert.id}}",
"service": "{{alert.groups[0].keyValues.service name}}",

"priority": "{{alertDef.priority}}",

“timestamp”: "{{alert.timestamp | date(format='%Y-%m-%d SH:%M"')}}",
"status": "{{alert.status}}"

The service name is extracted from the alert group’s key-value pair ( service name ) and

is included in the notification. This allows the notification to dynamically reflect which
service the alert pertains to.

(9 Last updated: April 5, 2025

Was this helpful?

Leave your feedback here.

OYes O No

© 2025 Coralogix. All rights reserved.
Generated on: November 18, 2025
Source: https://coralogix.com/docs/user-guides/notification-center/dynamic-templating/



