
Dynamic Templating
Notification Center customization is powered by the Tera templating language. Tera

enables you to create highly flexible and dynamic templates that respond to a variety of

contexts, formats, and use cases. You can use dynamic templating to personalize your

connectors, presets, and routing rules.

Global context available to all templates

All templates have access to the _context variable, which contains metadata about the

notification source type, including system identifiers and trigger details. This context

allows you to dynamically customize your template content based on the notification's

origin.

_context reference

Variable Description

_context Contains metadata about the context of the

notification source type

_context.entityType The notification source type (e.g., "alerts")

_context.entitySubType The notification source subtype, if any

_context.entityLabels Notification source type labels associated with the

context (e.g., "host", "region")

_context.system Information about the system, including its ID and

name

_context.system.id The system's unique identifier

_context.system.name The system's name (e.g., "acme-prod")

_context.trigger The trigger that initiated the notification source type

_context.trigger.automaticTr

igger

Automatic trigger details (if applicable)

_context.trigger.manualTrigg

er

Manual trigger details (e.g., user email)

_context.trigger.manualTrigg

er.userEmail

The email address of the user who manually triggered

the notification source type

Variable Description

_context.trigger.type The type of trigger that initiated the notification source

type (e.g., "manual")

Inspecting context with get_context

Use the custom get_context function to view the entire template context. This is useful

for debugging and discovering available variables.

Name Type Description Usage

example

get_conte

xt

Custom Returns the entire template context as an

object, which can be used to troubleshoot

and view available variables

{{

get_context(

) }}

Example: Using get_context for debugging

View the entire context and all variables that are available for the notification source

type.

Input

Example output

This output displays all possible variables for this alert notification source in a readable

JSON format:

{{ get_context() | json_encode(pretty = true) }}

{

 "_context": {

 "entityType": "alerts",

 "entitySubType": "metricThresholdMoreThanTriggered",

 "entityLabels": {},

 "trigger": {

 "type": "manual",

 "manualTrigger": {

 "userEmail": "user@email.com"

 },

 "automaticTrigger": null

 },

 "system": {

 "id": "17266",

 "name": "onlineboutique"

 }

 },

 "alert": {

 "timestamp": 1638403600,

 "id": "497f6eca-6276-4993-bfeb-53cbbbba6f08",

 "status": "Triggered",

 "groups": [

 {

 "status": "Triggered",

 "priority": "P1",

 "keyValues": {

 "host": "server1"

 },

 "details": {

 "$type": "metricThreshold",

 "metricThreshold": {

 "conditionType": "More than threshold",

 "fromTimestamp": 1638400000,

 "toTimestamp": 1638403600,

 "maxValueOverThreshold": 95,

 "minValueOverThreshold": 85,

 "avgValueOverThreshold": 90,

 "pctOverThreshold": 90,

 "isUndetectedValue": false

 }

 }

 }

]

 },

 "alertDef": {

 "name": "CPU Utilization Alert",

 "description": "An alert for monitoring CPU utilization.",

 "entityLabels": {

 "environment": "production",

 "region": "us-west"

 }

 }

}

This gives you a complete snapshot of the current data available for the alert, which can

be useful for debugging and customizing notifications.

Filters

Filters let you transform data, manipulate variables, or format strings, numbers, and

dates. These can be used to clean up or format data to fit your notification needs.

Name Type Description Usage

Example

json_escap

e

Custom Converts an object to a JSON string `{{

date Built-in Converts a timestamp into a

formatted date string

`{{

1616346000

default Built-in Returns a default value if the variable

is undefined

`{{ value

Example: Using json_escape for output

If you need to display a complex object as a string, use the json_escape filter:

Input

Example output

This transforms any value into its JSON string representation:

Example: Formatting dates with the date filter

The date filter allows you to format timestamps for easier readability. Here’s an

example of how to use it:

Input

{{ get_context() | json_escape }}

{\"_context\":

{\"entityType\":\"alerts\",\"entitySubType\":\"metricThresholdMoreThanTriggere

... }}

{{ alert.timestamp | date(format="%Y-%m-%d %H:%M") }}

Example output

Example: Using default to handle missing values

The default filter helps you provide fallback values if a variable is missing or undefined:

Input

Example Output

Variables

Variables refer to the dynamic data or objects that are available within the template's

execution context. Coralogix supports the _context variable, containing metadata

about the context of the notification source type. For alerts, this includes source type,

trigger details, and system information.

Example 1: To view the context

Input

Example output

Displays the entire alert context in a nicely formatted JSON object.

We detected a change in the values for the following hosts:

{% for i in alert.groups %}

{{ i.priority }} / {{ i.keyValues | json_escape }} / {{

i.details.metricThreshold.fromTimestamp | date(format="%Y-%m-%d %H:%M") }}

{% endfor %}

2021-12-02 00:06

We detected a change in the values for the following hosts:

P1 / {"host": "server1"} / 2021-12-01 23:06

{{ alertDef.entityLabels.myVal | default(value="no value") }}

no value

{{ get_context() | json_encode(pretty = true) }}

Example 2: Viewing the context directly

Input

Example output

Example 3: Accessing a specific field in the context (entitySubType)

Input

Example output

Example 4: Viewing the system context

Input

Example output

The output consists of your Coralogix team ID and team name.

Example 5: Viewing the trigger details

Input

{{ _context }}

alerts

{{ _context.entitySubType }}

logsThresholdMoreThanTriggered

{{ _context.system | json_encode(pretty = true) }}

{

 "id": "17266",

 "name": "onlineboutique"

}

{{ _context.trigger | json_encode(pretty = true) }}

Example output

This output displays what triggered the notification, showing whether it was manual or

automatic:

In this example, a manual trigger was used by a user.

Tips for troubleshooting and debugging

Use get_context() to view all available variables: This is especially useful when

you’re working with custom variables or trying to figure out which data is available

in the template context.

Use json_encode or json_escape to format data: When working with complex

objects, these filters can help you convert them into a readable format, which is

helpful for debugging.

Check for undefined variables: Always use the default filter to provide fallback

values in case a variable is missing from the alert context. This ensures that

notifications are always delivered.

Practical examples for alert notification source type

Below are examples of how to use the functions, filters, and variables to customize your

notifications effectively. These examples show how to incorporate dynamic values,

handle conditional logic, and format the content to make your alerts more informative.

The examples include alerts notification source type schema, which can be found here.

Using variables in alert names & descriptions

You can include dynamic variables in an alert’s name or description to propagate them

into your notification content. For example:

{

 "type": "manual",

 "manualTrigger": {

 "userEmail": "user@email.com"

 },

 "automaticTrigger": null

}

Alert has triggered for subsystem

{{alert.groups[0].keyValues['coralogix.metadata.subsystemName']}}

https://coralogix.com/docs/user-guides/alerting/configure-notifications/source-type-schema/

Date formatting

Alert timestamps are typically in Epoch format (e.g., 1735655158). You can use the date

function to convert these to human-readable format:

Example: {{alert.timestamp | date(format="%Y-%m-%d %H:%M")}}

This converts an Epoch timestamp (e.g., 1638403600) into a readable format like

2021-12-02 00:06 .

Example: {{alert.timestamp | date(format="%Y-%m-%d %H:%M")}}

This converts an Epoch timestamp (e.g., 1638403600) into a readable format like

2021-12-02 00:06 .

By leveraging these functions, filters, and variables, you can create customized,

informative alerts tailored to your specific notification needs.

Example 1: Conditional alert handling based on alert definition name

This example customizes the notification content based on the alert definition name. It

checks the alert type and formats the message accordingly:

This conditional logic allows the notification to dynamically change depending on the

alert's name:

For "RDS Instance Low CPU", it includes the affected database identifier and the

team responsible for the alert.

For "OOM killed pod", it includes the pod and container names.

If neither condition is met, it simply outputs the alert's name.

For "RDS Instance Low CPU", it includes the affected database identifier and the

team responsible for the alert.

{% if alertDef.name == "RDS Instance Low CPU" %}

affected db: {{alert.groups[0].keyValues.DBInstanceIdentifier}}

credit balance is below: {{i.condition.threshold}}

owning team: {{alert.groups[0].keyValues.Team}}

{% elif alertDef.name == 'OOM killed pod' %}

pod: {{alert.groups[0].keyValues.k8s_pod_name}}

container: {{alert.groups[0].keyValues.k8s_container_name}}

{% else %}

{{alertDef.name}} is triggering

{% endif %}

For "OOM killed pod", it includes the pod and container names.

If neither condition is met, it simply outputs the alert's name.

Example 2: Logs threshold alert description

This example formats a notification for a log threshold alert, displaying detailed

information about the alert and its associated values. This template includes detailed

information about the alert, such as the priority, affected values, thresholds, and the

specific rules that caused the alert.

It uses the date filter to format timestamps and json_escape to ensure the output is

safe for JSON.

Note also that Jane Doe and all channel users are tagged as part of this Slack

notification.

{{alert.timestamp | date(format="%Y-%m-%d %H:%M")}}

We've detected that the query result has dropped below the threshold for

the following values of {{alertDef.groupByKeys}}:

Priority / Values / Threshold / Start Time / End Time

{% for i in alert.groups %}

{{i.priority}} / {{i.keyValues | json_escape}} /

{{i.details.logsThreshold.fromTimestamp | date(format = "%Y-%m-%d %H:%M")}}

/ {{i.details.logsThreshold.toTimestamp}}

{% endfor %}

Alert Query:

{{alertDef.typeDefinition.logsThreshold.luceneQuery}}

Alert Condition Rules:

Condition type - {{

alertDef.typeDefinition.logsThreshold.rules[0].condition.conditionType }}

Condition rules -

{% for i in alertDef.typeDefinition.logsThreshold.rules %}

Threshold: {{i.condition.threshold}}, timeframe:

{{i.condition.timeWindow.logsTimeWindowSpecificValue}}.

{% endfor %}

@jane.doe

@here

Example 3: Grouping by service

If your alert is grouped by service, you can include dynamic information related to the

affected service. Here’s an example where the group-by key is service_name :

The service name is extracted from the alert group’s key-value pair (service_name) and

is included in the notification. This allows the notification to dynamically reflect which

service the alert pertains to.

Last updated: April 5, 2025

© 2025 Coralogix. All rights reserved.

Generated on: November 18, 2025

Source: https://coralogix.com/docs/user-guides/notification-center/dynamic-templating/

{

 "alert_url": "https://teamname-

prod.app.eu2.coralogix.com/#/alerts/{{alert.id}}",

 "service": "{{alert.groups[0].keyValues.service_name}}",

 "priority": "{{alertDef.priority}}",

 "timestamp": "{{alert.timestamp | date(format='%Y-%m-%d %H:%M')}}",

 "status": "{{alert.status}}"

}

Was this helpful?

Leave your feedback here.

Yes No

Send

