
BROUGHT TO YOU IN PARTNERSHIP WITH

PAGE 2DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

Welcome Letter

Picture this: A hot, new startup is pursuing a SaaS model

that's yet to exist, and they are flying by the seat of their

pants. Employees are juggling multiple hats as the company

struggles to find enough hours in the day to hire new

employees, each with dedicated roles. Johnny, the startup's

most senior engineer, starts to lay the foundation for a

CI/CD pipeline but then quickly halts in his tracks. He can

surely figure out the environment setup himself with the

assistance of some online documentation, but perhaps he

should consider if finding an off-the-shelf solution would

make more sense.

Enter managed services.

With a managed service, the startup moves a lot of the

complexity out of the business. Instead of needing to think

through all the security implications involved in a self-hosted

pipeline, employees will simply have access to a service that

just works and is accessible over the internet — all out of

the box. The managed service will also take care of applying

security updates and ensuring systems are fully operational

24/7. But wait, can the startup trust this service provider?

What’s the managed service's uptime SLA? What control

will the startup relinquish by giving the managed service

control of their pipeline?

Maybe Johnny would be better off hosting the CI/CD pipeline

internally, which does come with some advantages: more

granular control, lower cost, and the ability to customize

the software based on the startup's needs. It also comes

with some disadvantages: much more complex setup

and configuration, the need to continuously maintain the

system, and required internal knowledge of CI/CD software

and security requirements.

What is better for the startup will largely depend on several

factors and will likely be different for every company. The

truth is there is no universally right solution for all CI/CD

implementations, and it can be challenging trying to identify

the best course of action for each particular use case. The

awesome part, in either case, is what the pipeline enables.

We joined forces with multiple experts in the field to give

a clear picture of how CI/CD stands in the industry today.

In this report, you will learn about software delivery practices

and the impact of continuous delivery on software quality

based on our research analyses, as well as discover a

comparison of managed vs. self-hosted CI/CD, the role of

automated testing in pipelines, threat mitigation strategies,

infrastructure provisioning, and much, much more!

Welcome to DZone's 2022 "DevOps: CI/CD and Application

Release Orchestration" Trend Report — we hope you enjoy

reading this piece as much as we did creating it!

Kind regards,

Jacob Doiron

By Jacob Doiron, Senior Software Engineer at DZone

Jacob Doiron, Senior Software Engineer at DZone
@jdoiron94 on LinkedIn

Jacob was introduced to software development after finding curiosity in third-party game clients and
exploring the extent to which gameplay could be automated. When he is not focused on addressing JIRA
tickets, he can be found playing games, reading a fantasy novel, or playing with his rescue dog, Shadow.

https://www.linkedin.com/in/jdoiron94/

PAGE 3DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

ORIGINAL RESEARCH

From January-February 2022, DZone surveyed software developers, architects, site reliability engineers, platform engineers,

and other IT professionals in order to understand how the way software is built relates to the way software is delivered.

Major research targets were:
1. Software delivery practices and metrics

2. Relation of software delivery and design

3. Relation of software delivery techniques and effects

Methods:
We created a survey and distributed it to a global audience of software professionals. Question formats included multiple choice,

free response, and ranking. Survey links were distributed via email to an opt-in subscriber list, popups on DZone.com, LinkedIn,

and the DZone Core Slack Workspace. The survey opened on January 24, 2022 and closed on February 6, 2022, recording 1,187

responses.

In this report, we review some of our key research findings. Many secondary findings of interest are not included here.

Additional findings will be published piecemeal on DZone.com.

Research Target One: Software Delivery Practices, Metrics, and Tooling
Motivation:

1. It is a truism that nobody knows how to develop software. It is perhaps less evidently true that nobody knows how to

deliver software, but for many software professionals, software delivery is something learned on the job, in battle, through

sweat and blood and tears. We suppose that the difficulties of delivery may be a function less of the intrinsic muddiness

of physics-free engineering than of the contingent fact that nobody teaches you DevOps in Algorithms and Data

Structures 101, Compiler Design 211, or Programming Language Theory 412. So we wanted to help software professionals

learn from others' experiences.

2. The (relatively recent) firm establishment of DevOps as a professional subdiscipline risks a new Cantor set/Zeno's paradox

specialization problem: Will the intersection of the development and operations silo become its own, third silo? We want

to pop this bubble before its wall grows too thick, so we set out to study "build phase" and "release phase" together.

3. "What is 'done'?" is hard enough to answer before production release. "What is 'done' well?" is trickier to ask coherently

(let alone answer) still. Yet rapid releases are supposed to facilitate iterative development by providing feedback on

software performance after the software is called "done." We wanted to know how software professionals cut through the

fuzziness of "done" and "done well" — what metrics they use to decide whether corrective work is needed and under what

circumstances — to improve software as delivered.

REASONS FOR ADOPTING CONTINUOUS DELIVERY
Continuous delivery makes many promises, each of which may enjoy a varying degree of salience to different software

professionals. We wanted to know what benefits software professionals overall expect from continuous delivery and how these

reasons for adopting continuous delivery vary by job description.

Key Research Findings
An Analysis of Results from DZone's 2022 CI/CD Survey

John Esposito, PhD, Technical Architect at 6st Technologies

PAGE 4DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

So we asked:

What do you believe are the top reasons for adopting continuous delivery? Please rank in order of most important (top) to

least important (bottom).

Results (n=445), ranked by overall score and segmented by respondent job description:

Table 1

REASONS FOR ADOPTING CONTINUOUS DELIVERY BY JOB ROLE

Respondent Role

Rank Overall Developers and architects DevOps leads and SREs Sysadmins

1 Increased speed of
feature delivery

Increased speed of feature
delivery

Increased speed of feature
delivery

Increased speed of
feature delivery

2 Shortened development
cycles

Shortened development
cycles

Shortened development
cycles

Shortened
development cycles

3 Increased release
frequency

Improved developer/
team flow/productivity

Improved developer/
team flow/productivity

Improved developer/
team flow/productivity

4 Improved developer/
team flow/productivity

Increased release frequency Increased release
frequency

Increased release
frequency

5 Reduced complexity of
development cycle

Reduced complexity of
development cycle

Reduced complexity of
development cycle

Reduced overhead
costs

6 Reduced deployment
error rate

Reduced deployment error
rate

Reduction in the number
of bugs post deployment

Reduced complexity of
development cycle

7 Reduction in the number
of bugs post deployment

Reduction in the number of
bugs post deployment

Reduced deployment error
rate

Reduced time to
complete QA feedback
loops

8 Reduced time to complete
QA feedback loops

Reduced time to complete
QA feedback loops

Reduced time to complete
QA feedback loops

Reduced maintenance
costs

9 Reduced overhead costs Reduced overhead costs Reduced overhead costs Reduced mean time to
discovery

10 Reduced maintenance
costs

Reduced maintenance costs Reduced mean time to
discovery

Reduction in the
number of bugs post
deployment

11 Reduced mean time to
discovery

Reduced mean time to
discovery

Reduced maintenance
costs

Reduced error budget

12 Reduced error budget Reduced error budget Reduced error budget Reduced deployment
error rate

Scores are computed by weighted rank: If, for a given response, answer A is ranked highest out of N answer options, A's score

is incremented by N, while if answer B is ranked second highest out of N answer options, B's score is incremented by N-1.

Observations:
1. The four overall top-ranked reasons for adopting continuous delivery did not vary by stakeholder role. We take this

to mean that continuous delivery is more or less equally appealing to all software professionals with respect to these

four desiderata.

PAGE 5DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

2. Variations by stakeholder role appear below these top four reasons in ways that seem to map what we might guess from

stakeholder role. Some notable differences are color-coded in the table above:

• Sysadmins ranked both maintenance and overhead costs higher than developers/architects

or DevOps professionals.

• Developers/architects and DevOps professionals ranked post-release bug counts and error rate reductions

higher than sysadmins.

• DevOps professionals ranked reduced mean time to discovery (MTTD) higher than developers/architects

and lower than sysadmins.

3. Overall, we are struck by the high degree of similarity between developers'/architects' and DevOps professionals' reasons

for adopting continuous delivery. This suggests that DevOps leads and SREs are more "in developer headspace" than they

are "in sysadmin headspace" — as the historical origins of DevOps and the sequence of abbreviations in the portmanteau

both suggest.

RANKING OF METRICS FOR CONTINUOUS DELIVERY
Reasons to adopt CD are adoption-antecedent; metrics for CD are adoption-sequent. Just as we wanted to know why software

professionals adopt continuous delivery, we wanted to know how software professionals measure continuous delivery, again

segmented by professional specialization. So we asked:

What do you believe are the most important metrics for continuous delivery? Please rank in order of most important (top) to

least important (bottom).

Results (n=459), ranked by overall score and segmented by respondent job description:

Table 2

METRICS FOR CONTINUOUS DELIVERY BY JOB ROLE

Respondent Role

Rank Overall Developers and architects DevOps leads and SREs Sysadmins

1 Deployment frequency Deployment frequency Deployment frequency Deployment frequency

2 Production downtime
during deployment

Production downtime
during deployment

Production downtime
during deployment

Change failure rate

3 Lead time Lead time Lead time Absolute number of bugs

4 Change failure rate Change failure rate Change failure rate Production downtime
during deployment

5 Mean time to recovery Mean time to recovery Mean time to recovery Lead time

6 Regression test duration Regression test duration Regression test duration Mean time to discovery

7 Mean time to discovery Absolute number of bugs Error rate Mean time to recovery

8 Absolute number of bugs Mean time to discovery Mean time to discovery Regression test duration

9 Error rate Error rate Absolute number of bugs Error rate

10 Error budget Error budget Error budget Error budget

Observations:
1. The top-ranked CD metric, deployment frequency, maps well to the top-ranked reason for adopting continuous delivery,

increased speed of feature delivery.

PAGE 6DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

2. Developers/architects and DevOps professionals ranked all metrics in the same order except for error rate and

absolute number of bugs. The swapping of these latter metrics maps well to the areas each role is responsible for:

Developers/architects fail in proportion to released bugs, while DevOps professionals fail in proportion to deployment

errors. Note: In retrospect, we realize that "error rate" may not unambiguously indicate "deployment error rate." In future

surveys, we will phrase this option more explicitly.

3. Sysadmins' ranking of CD metrics does not map to job responsibilities in the same way. If it did, we would expect

sysadmins to rank production downtime during deployment higher as a CD metric than the other two roles because

sysadmins are responsible for production uptime. We would also expect absolute number of bugs to be ranked much

lower because sysadmins do not create bugs.

In fact, among our respondents, the opposite is true. Because our sysadmins response count is very low (n=7),

we cannot form any conclusions with high confidence. But based on this inversion of expectations, with suitable

small-n caveats, we conjecture that sysadmins think of CD more defensively than developers/architects and DevOps

professionals. That is, sysadmins ranked the CD metrics that measure things others are responsible for higher, while

developers/architects ranked the CD metrics that they themselves are responsible for higher.

We imagine this reversal may be accounted for by the conjunction of greater immediate pressure placed on

sysadmins after release (an asymmetry) and agreement between sysadmins and other software professionals that

CD is more about development than about ops (a symmetry). This provides empirical support for the suggestion —

which we might separately hypothesize from the history of CD — that sysadmins feel less ownership over CD than

developers/architects or DevOps professionals.

PREREQUISITES FOR AUTOMATED PRODUCTION DEPLOYMENTS
Continuous delivery requires automation; safe continuous delivery requires the right kind of gating either during the release

pipeline or before code is committed to the build source. We wanted to know what software professionals are treating as

sufficient prerequisites for automated production deployments, so we asked:

Check all things that must be true (i.e., join by Boolean AND) in order to automate production deployments.

Results (n=521):

PREREQUISITES FOR PRODUCTION DEPLOYMENTS

Prerequisite % n=

Unit test coverage is 100% 25.2% 132

Unit test coverage is >75% 57.0% 298

Unit test coverage is >50% 14.7% 77

Code review process is robust 75.3% 394

All whitelisted user paths are covered by automated UI tests 41.5% 217

Most (a fuzzy definition of "most") user paths are covered by automated UI tests 37.3% 195

Realistic load test times are performed on every build 45.1% 236

Production and pre-production environments are provisioned by the same code 72.1% 377

Crucial features are called behind feature flags and can be turned off without a new deployment 40.3% 211

Rollback deployments have been used successfully in production many times before 49.3% 258

There is an auditable approval process to promote changes from pre-production to production 47.8% 250

Table 3

PAGE 7DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

Observations:
1. Robust code review is the most common automated production deployment prerequisite (75.3% of respondents).

Strictly speaking, of course, code review is not part of the release process — where release begins after source has been

committed) — but its high performance in this survey indicates that, in the judgment of software professionals, the

importance of robust code review for CD should not be overlooked.

2. Infrastructure as Code (IaC), phrased as "production and pre-production environments are provisioned by the same

code," is the second most common automated production deployment prerequisite (72.1% of respondents) and easily the

highest-scoring release-specific prerequisite. We are surprised not by how high this number is, but by how low: Over a

quarter of respondents do not consider IaC a prerequisite for production deployments.

3. The most preferred unit test coverage is 75% (57% of respondents), followed by 100% (25.2%). These numbers are slightly

up from the same audience last year, only 21.7% of whom require 100% unit test coverage. As in last year's survey, however,

100% unit test coverage does not correlate with decreased incidents and rollbacks:

• 11.5% of respondents who require 100% unit test coverage reported incidents or rollbacks almost every deployment

vs. 4% of respondents who require 75% unit test coverage.

• 45.8% of respondents who require 100% unit test coverage reported incidents or rollbacks occasionally vs. 39.7% of

respondents who require 75% unit test coverage.

Again, we conjecture that this difference may be due to overconfidence in unit test coverage and/or excessive focus on a

"perfect" numerical target (100%) when mapping of asserts to business cases, quality of the data mocks, and design of higher-

integration tests are more important for test quality than pure unit-level coverage.

IMPACT OF CONTINUOUS DELIVERY ON PERCEIVED SOFTWARE QUALITY
In addition to specific metrics used to evaluate CD itself, we wanted to know what software professionals think about the

impact of CD on software quality. So we asked:

Overall, adopting continuous delivery has made my applications: {Higher quality, Lower quality, No change, Not applicable,

I don't know}

Results (n=522):

O

Figure 1

PERCEIVED IMPACT OF CONTINUOUS DELIVERY ON SOFTWARE QUALITY

Higher quality

Lower quality

No change

Not applicable

I don’t know

7.1%

9.2%

73.9%

5.6%

4.2%

bservations:
1. A large majority of respondents (73.9%) judged that CD makes their applications higher quality. This is good news for CD:

It is not only making releases more pleasant, but actually resulting in better software.

PAGE 8DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

2. DevOps professionals are slightly more likely to judge that CD makes their applications higher quality (83.7%) vs.

developers/architects (75.7%), a difference mostly accounted for by greater neutrality on the part of developers/architects

— 9% reporting no change vs. 4.1% of DevOps professionals reporting no change.

3. Overall subjective evaluations of CD's impact on software quality, as measured by this question, are consistent with

reported incident/rollback rates:

Figure 2

RELATION OF PERCEIVED IMPACT OF CONTINUOUS DELIVERY TO INCIDENT/ROLLBACK RATE

0

20

40

60

80

100

Incidents/rollbacks
occasional

Incidents/rollbacks
rare

Incidents/rollbacks
almost every deployment

Higher quality Lower quality No change Not applicable I don’t know

4. Respondents whose favorite programming language is JavaScript were least likely to report that CD results in higher

quality software overall, while respondents whose favorite programming language is Golang were most likely to report

that CD results in higher quality software overall:

Figure 3

IMPACT OF CONTINUOUS DELIVERY ON SOFTWARE QUALITY BY PREFERRED PROGRAMMING LANGUAGE

0

20

40

60

80

100

Java

C#

Python

JavaScript

Golang

Higher quality Lower quality No change Not applicable I don’t know

We conjecture (albeit without much confidence) that this may be because JavaScript-preferring developers' code

is more likely to interact with human users. Hence, it requires more automated UI/UX testing for a satisfactory CD

pipeline, and UI/UX test automation may be less reliable than non-UI/UX automated testing — if only because defining

desired UX outcomes is more complex than defining, say, desired price calculation outcomes.

PAGE 9DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

Research Target Two: Relation of Software Delivery and Design
Motivations:

1. Engineering involves trade-offs; therefore, engineering involves regrets. That is, when one desideratum is neglected for

the sake of another (i.e., the trade-off is made), any situation that benefits from the neglected desideratum is a trade-

off victim. And no engineer worth their craftsperson pride fully ignores these missed opportunities simply because the

trade-off produced better results in aggregate.

Trade-offs are design decisions made with an eye toward imagined aggregate results, so the excellence of the trade-

off as a design decision is known only hypothetically before release. We wanted to understand how some basic

software design decisions — and the trade-offs they entail — relate to what happens when the imaginary gives way

to the actual.

2. Rollbacks come from unforeseen side effects. Much of software design is intended to avoid side effects, and a sign of

good code is its transparency to the effects of change. (Some simplifying license might even suggest that the essence of

formal languages is the identification of intent and expression.) But the chaotic fires of production may subject code to

far more entropic conditions — unintended side effect incubators — than even the best-thought-through test suites. We

wanted to see how software design principles aimed at avoiding side effects actually perform in the post-release wild.

3. At age barely-zero, we learn that gratification is, sadly, sometimes delayed. At age four, we're told that delaying

gratification is a moral excellence that we would surely embrace if only our souls were not so defective. In school, for a

decade or two, we power through boring lectures and more boring homework supposing (or nodding to our teachers

who suppose) that our present effort is building up untold treasures of Great Skill in The Magical Future.

As adults, so conditioned, we somehow attempt to affirm simultaneously (a) The Global Utilitarian Ethic of the

Timeless Rational™ from our everything-inchoate childhood, (b) the Move Fast and Break Things dictum of The

Silicon Valley Disruptor©, and eventually — if we're truly lucky — (c) the grizzled Nobody Knows Anything, So Just Build

It wisdom of Agile®. Okay but…should we write unit tests before writing our substantive code? Is it okay to release

without a creative human trying to break it? Is my meat brain clever enough to know what this monster I've fashioned

will actually do with a million screaming GETs per second? It turns out none of these now-or-later work distribution

principles really tell us.

So we learn whether to TDD or Waterfall, which pre-release manual tests to skip, and which methods to re-

parameterize or to refactor into multiple-dispatch style from the raw, atheoretical experience of the build/release-

delay/observe-terror/relax cycle. We wanted to understand how software professionals learn how to distribute their

work along the release cycle based on real-world development and delivery experience.

RELATION OF PREFERRED PROGRAMMING PARADIGM TO FREQUENCY OF INCIDENTS/ROLLBACKS
Higher-level programming paradigms (e.g., functional and object-oriented programming) promise better source legibility,

which presumably leads to less slippage between intent and effect, and further, to fewer incidents/rollbacks. We wanted to see

if this turned out to be the case, so we correlated frequency of incident/rollback data with preferred programming paradigm

— object-oriented, functional, imperative, procedural, or actor-model. Because developers may use multiple paradigms over

the course of their career, we made the simplifying assumption that, for the most part, developers are more likely to work

with their preferred programming paradigm than not. And while this is certainly false in many cases, we suppose it is true of

developers in aggregate, on the argument that demand for programming jobs is high enough to push developers at least

somewhat toward being able to use their preferred paradigm.

We did not observe any significant difference in incident/rollback frequency by top programming paradigm preference.

RELATION OF PREFERENCE FOR DEPENDENCY INJECTION TO FREQUENCY OF INCIDENTS/ROLLBACKS
In theory, dependency injection increases modularity by decreasing coupling and simplifies testing by making mocking

cleaner. But dependency injection can also increase complexity, which increases overall brittleness of the codebase. So the

overall effect of dependency injection on software quality and performance in production is, as usual, a complex sum of

costs and benefits. We wanted to understand the impact of dependency injection at a very high level, abstracting from the

complexity of the sum.

PAGE 10DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

So we asked:

Agree/disagree: Dependency injection should be used whenever possible.

Results vs. incident/rollback frequency:

Figure 4

DEPENDENCY INJECTION USAGE PREFERENCE VS. INCIDENT/ROLLBACK RATE

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

Not applicable

0

10

20

30

40

50

60

70

Almost every deployment Occasionally We rarely have to roll back
due to deployment

Observation:
Respondents who strongly disagreed that dependency injection should be used whenever possible are most likely to report

rare incidents/rollbacks after deployment (63.3%), but respondents who strongly agreed are second most likely (58.4%). We

take this to suggest both that dependency injection may not result in smoother deployments and — because the smoothest

releasers were also the most opinionated — that the presence of someone with strong opinions about dependency injection

on a software team may encourage less frequent incidents/rollbacks after release. Presumably, this is because people who

think carefully about coupling and complexity are more likely to have strong opinions about dependency injection than those

who are neutral.

PERCEIVED IMPACT OF MICROSERVICE ARCHITECTURE ON FEATURE VELOCITY
In principle, microservices should facilitate continuous delivery: Well-defined contracts among independently growing service-

oriented nodes allow each node to release independently of others. We wanted to see if the feature velocity increase promised

by microservice architecture holds true in practice, so we asked:

In my experience, adopting a microservice architecture has resulted in: {Higher feature velocity, Lower feature velocity, No

change in feature velocity, I don't know}

Results (n=522), shown in Table 4:

Observations:
1. The feature-velocity promise of

microservices is somewhat supported by

survey respondents. A significant majority

(64%) judged that microservices resulted

in higher feature velocity, and only a small

minority (12.1%) judged that microservices

resulted in lower feature velocity.

Table 4

MICROSERVICES IMPACT ON FEATURE VELOCITY

% n=

Higher feature velocity 64.0% 334

Lower feature velocity 12.1% 63

No change in feature velocity 9.2% 48

I don't know 14.8% 77

PAGE 11DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

2. These numbers are slightly less optimistic toward microservices than last year, when 71.0% of respondents reported that

microservice adoption resulted in higher feature velocity. However, most of the difference is accounted for by an increase

in agnostic ("I don't know") answers — 14.8% this year vs. 5.6% last year.

We take this to mean that the impact of microservices on feature velocity is becoming less clear over time, which

may suggest some kind of optimal shelf-life for a microservice architecture — an intriguing possibility we intend to

examine in future surveys on software architecture.

RELATION OF TEST-DRIVEN DEVELOPMENT USAGE TO INCIDENT/ROLLBACK FREQUENCY
Plausible: Yes, test-driven development (TDD) enables CD because TDD results in better tests, which means more reliable code.

Also plausible: No, TDD does not enable CD because TDD results in many test rewrites, which slows velocity. We wanted to see

which of these stories describes what actually happens, so we asked:

How often do you take the following approaches to software development and design? {Test-driven Development (TDD),

Behavior-Driven Development (BDD), Domain-Driven Design (DDD)}

Results vs. incident/rollback frequency:

Figure 5

INCIDENT/ROLLBACK FREQUENCY BY USE OF TTD ALWAYS VS. NEVER

Always use TDD

Never use TDD

0

10

20

30

40

50

60

Almost every deployment Occasionally We rarely have to roll back
due to deployment

Observations:
1. Respondents who always use TDD are more likely to report rare incidents/rollbacks (55.6%) than respondents who never

use TDD (50%), and "almost every" and "occasional" numbers are consistent with this difference. This suggests that TDD

may indeed facilitate CD and make releases smoother.

2. Respondents who 'always' use TDD are also

more likely than respondents who 'never' use

TDD to judge their current rate of deployment

'just right', more likely to judge it 'too fast', and

far less likely to judge it 'too slow' (see Table 5).

We take these results — especially the far higher

rate of "too slow" responses among "never TDD"

respondents, 48.5% vs. 20.8% of "always TDD"

respondents — as tentative refutation of the

"TDD slows you down" objection.

Table 5

DEPLOYMENT RATE BY USE OF TDD

Deployment rate TDD always TDD never

Too slow 20.8% 48.5%

Too fast 19.4% 7.6%

Just right 59.7% 43.9%

PAGE 12DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

3. TDD use also strongly correlates with perceived optimal technical debt:

Table 6

TECHNICAL DEBT BY USE OF TDD

TDD always TDD never

Too much technical debt 33.3% 51.5%

Too little technical debt 6.9% 10.6%

The optimal amount of technical debt 51.4% 25.8%

I have no opinion 8.3% 12.1%

RELATION OF OBJECT-ORIENTED ANALYSIS AND DESIGN TO PERCEIVED TECHNICAL DEBT
The old message-board religious war: Do the well-membraned cells really take care of themselves? Or is the idea of state so

unmathematical that object-oriented systems inevitably become too hard to reason about? Recognizing that technical debt

is difficult to measure in the long term, we wanted to know whether the use of object-oriented analysis and design (OOAD)

relates to technical debt as judged by software professionals. So we asked:

How often do you take the following approaches to software development and design? {Test-driven Development (TDD),

Behavior-Driven Development (BDD), Domain-Driven Design (DDD)}

Results:

Figure 6

TECHNICAL DEBT BY USE OF OOAD ALWAYS VS. NEVER

Always use OOAD

Never use OOAD

0

10

20

30

40

50

60

Too much
technical debt

Too little
technical debt

The optimal amount
of technical debt

I have no opinion

Observations:
Respondents who never use OOAD are much more likely to report that their organization carries too much technical debt

(56.4%) vs. respondents who always use OOAD (33.8%) and are much less likely to report optimal technical debt (25.5% vs. 43.1%).

Although technical debt is, of course, affected by many things besides programming paradigm, we take these large differences

to suggest that explicit attention to object-oriented design may prevent technical debt from growing too large.

Research Target Three: Relation of Software Delivery Techniques and Effects
Motivations

1. They say that continuous delivery results in better software. But does it? Well, we have no magic universal metric of

software quality, so we asked software developers what they think.

PAGE 13DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

2. Pre-merge code reviews lie somewhere between writing code and releasing it. Decisions made by the reviewer may affect

the next pending release, but prudent reviewers, if given enough review time, consider possible effects of the reviewed

code long after the next pending release.

This means that code review involves its own trade-offs between the same short-term (get this code in!) and long-

term (preserve the integrity of the application!) considerations that the original developer must also keep in mind

— a "left-side" pipeline activity — while also gating the application at the source level as a manual QA tester gates

the application at the functional level — a "right-side" pipeline activity. We wanted to understand how developers'

approach to these 'farther-right' pipeline activities relates to success or failure on release.

3. Of course, you want the machine you built (offspring you begot) to do the work it was intended to do, to run smoothly

under various unforeseen conditions, and to grow easily in the future. But as monthly deployment time approaches, the

chunk of your mind occupied by such hopes and dreams shrinks before the ballooning fear of a disastrous, weekend-

ruining release. Or so the continuous delivery evangelists tell us. They promise that a sufficiently mature pipeline will

drive these nightmares away. But will they? We wanted to know whether the anxiety-lysing promise of CD is borne out in

software professionals' real-world experience.

DEPLOYMENT FREQUENCY AND FREQUENCY OF INCIDENTS/ROLLBACKS
Move too fast, too many things break. Move too slow, too many things…still break — and don't exist. To know optimal

deployment frequency requires feedback on released software quality. Because measurement of software quality is complex

and purpose-dependent (e.g., a startup's fast-release minimum viable product may not need to be as modular as an enterprise

back end), we wanted some sense of how to tune velocity based on two high-level measures:

1. Respondents' subjective opinions, measured as the difference between actual and desired deployment frequency

2. Reported incidents and rollbacks, correlated with actual deployment frequency

So we asked three questions:

How often do you release to production?

How often would you like to release to production?

How often do your deploys result in incidents or rollbacks?

Results (n=523 and 519, respectively):

Figure 7

FREQUENCY OF RELEASE TO PRODUCTION

ACTUAL DEPLOYMENT RATE DESIRED DEPLOYMENT RATE

Less than once per month

Once per month

Multiple times per month

Once per week

Multiple times per week

Once per day

Multiple times per day

2.1% 5.2%

17.2%

20.1%

14.3%

11.1%

30.0%

6.2%

5.2%

20.4%

24.7%

12.3%

15.4%

15.8%

PAGE 14DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

Observations:
1. As we observed last year (and to no one's surprise), respondents would like to release more frequently than they do

overall. The biggest absolute difference between actual and desired release frequency obtains with respect to a once-per-

week cadence (11.1% actual vs. 15.8% desired), a difference that seems to draw responses mostly from the once-per-month

cadence (30% actual vs. 24.7% desired).

2. DevOps professionals are more than twice as likely as developers/architects to want to release multiple times per day

(22% vs. 10.5%). Presumably, this is partly because, as DevOps professionals, they are especially committed to CD. We

might imagine that if their experience suggested that releasing multiple times per day were causing trouble, then they

would not prefer it, so we take this high number as evidence that multiple-times-per-day releases are generally desirable.

The relation of actual release frequency to frequency of incidents/rollbacks observed is complex:

Figure 8

RELATION OF RELEASE FREQUENCY TO INCIDENT/ROLLBACK RATE

Less than once per month

Once per month

Multiple times per month

Once per week

Mutiple times per week

Once per day

Multiple times per day

0

10

20

30

40

50

60

70

Almost every deployment Occasionally We rarely have to roll back
due to deployment

Observations:
1. Those who release once per day or multiple times per day are by far the most likely to report that they rarely have to roll

back due to deployment issues — 63.6% and 63%, respectively vs. 53.4% of the next nearest release frequency reporting

rare rollbacks (less than once per month). So the maximally frequent releases correlate with the most reliable rollouts. The

minimally frequent releases are a (distant) second, and the differences between sub-once-per-day rare rollback rates are

smaller than the difference between the two most frequent and the rest.

2. Overall rates of incident/rollback seem encouragingly low with only 6% reporting incident/rollback almost every

deployment, a slight improvement over our last survey on this topic (7.4% in 2021).

3. A word of caution, however: When we cross incident/rollback rate with subjectively evaluated current rate of deployment

(an answer to the question, Our current rate of deployment is {Too slow, Too fast, Just right}), it appears that too fast is

significantly less likely than too slow to correlate with rare rollbacks:

See Figure 9 on next page

PAGE 15DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

Figure 9

RELATION OF JUDGMENTS ON RELEASE FREQUENCY TO INCIDENT/ROLLBACK RATE

Too slow

Too fast

Just right

0

10

20

30

40

50

60

Almost every deployment Occasionally We rarely have to roll back
due to deployment

In the subjective judgment of survey respondents, at least, too slow releases are safer than too fast releases.

RELATION OF MANUAL INTERVENTIONS TO FREQUENCY OF INCIDENTS/ROLLBACKS
Software errs more repeatably than humans. Automated tests may be good or bad, but they can easily improve monotonically

over time. Because human evaluations are both slower and less reliable, the usual CD story excludes manual intervention from

release as much as possible. We wanted to see if manual intervention does in fact result in rougher releases, so we asked:

Do your deployments to production require any manual steps?

Results vs. incidents/rollbacks:

Figure 10

RELATION OF INCIDENT/ROLLBACK RATE TO REQUIRED MANUAL DEPLOYMENT STEPS

Requires manual steps

Does not require
manual steps

0

10

20

30

40

50

60

70

Almost every deployment Occasionally We rarely have to roll back
due to deployment

Observation:
Respondents whose production deploys do not require any manual steps are significantly more likely to report rare incidents/

rollbacks (63.8%) vs. respondents whose production deploys do require manual steps (49%). We take this as empirical

endorsement of the "avoid manual steps where possible" dictum — not only in order to achieve CD in some abstract sense, but

also, concretely, to avoid having to rollback after a production release.

PAGE 16DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

RELATION OF PULL REQUEST REJECTION ON FREQUENCY OF INCIDENTS/ROLLBACKS
Code reviews are a technical and social dance. Cue internal dialogue:

"How far out should I cast my imagination when considering the full implications of this code for, what I take to be, the

future of this application? Too short a time-horizon permits ungraspable spaghetti (counter-acronym: DRY); too long a

time-horizon encourages useless, weighty abstraction (counter-acronym: YAGNI).

Or again: Should I request modifications because this easy-reading code makes many more I/O calls than necessary

(for the sake of clean design), or let it through because readability is more important than performance in this case —

we can always upgrade the hard disk anyway? And how much are all these teaching opportunities? And how much

do I care about the ego of the committer? (Anyone in a senior technical position knows that it is foolish to mock or

ignore this latter consideration: Skilled people learn when egos are bruised, but not bruised too much, and only when

removing the cause of the bruise is within reach.)"

Pull request (PR) reviews are the point where code review (build-side) most nearly enters the deployment pipeline (release-

side), so we wanted to know, at a very high level, how treatment of pull requests relates to post-release incidents/rollbacks. This

is an intractable question, though: Pull requests can be rejected for many reasons, the rejection may or may not result in better

code, rejection for long-term considerations is not expected to affect imminent releases as much as future releases or future

development time/pain, some rejections may be wise and others foolish, the psychological/learning effect is totally orthogonal

to all these questions, etc.

As a very rough first approximation, therefore, we asked a more focused question:

Have you ever personally rejected a pull request because the code in the pull request did not include adequate automated

tests (e.g., because coverage by LoC was too low, because test code did not test enough meaningful scenarios)?

And we correlated that with incident/rollback frequency. The reasoning is that if test coverage is important to enforce during

code review for the sake of smooth release, then at a very hazy level of approximation, people who have rejected PRs for

insufficient test coverage are less likely to experience incidents/rollbacks.

Results:

Figure 11

RELATION OF INCIDENT/ROLLBACK RATE TO TEST COVERAGE PULL REQUESTS

Have rejected PR
for test coverage

Have not rejected PR
for test coverage

0

10

20

30

40

50

60

Almost every deployment Occasionally We rarely have to roll back
due to deployment

Observation: No significant relation is evident between rejecting a PR for insufficient test coverage and incident/rollback

rate. Because of the very high level of these questions, we do not take this as evidence for or against any relation between PR

rejection for insufficient test coverage and release smoothness.

PAGE 17DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

Future Research
In future research, we aim to focus more granularly on relations of software design, release pipeline design, and downstream

effects both within a specific feature release and in relation to more downstream metrics than incident/rollback frequency or

snapshotted technical debt (e.g., relation of release frequency to actual refactoring time or development slowdown).

Our survey included material not covered in this publication, including:

• Specific types of tests run before deployment

• Degree of environment automation across the release pipeline

• Effect of environment drift on release frequency and deployment anxiety

• Relation of manual intervention count to incident/rollback frequency

• Organizational barriers to adopting continuous delivery

• Source branching strategies

• Organizational focus on development vs. operations

Please contact publications@dzone.com if you would like to discuss any of our findings or supplementary data.

John Esposito, PhD, Technical Architect at 6st Technologies
@subwayprophet on GitHub | @johnesposito on DZone

John Esposito works as technical architect at 6st Technologies, teaches undergrads whenever they will

listen, and moonlights as research analyst at DZone.com. He wrote his first C in junior high and is finally

starting to understand JavaScript NaN%. When he isn’t annoyed at code written by his past self, John

hangs out with his wife and cats Gilgamesh and Behemoth, who look and act like their names.

mailto:publications@dzone.com?subject=Re:%20research%20inquiry%20-%20CI/CD%20Trend%20Report%202022
https://github.com/subwayprophet
https://dzone.com/users/937563/johnesposito.html

10.15.2

10.15.4

10.15.5

10.15.610.15.7

10.15.3

10.15.1

-1.45%CHANGE IN HIGH

SEVERITY LOG RATIO

6k newly introduced errors

Analyze and monitor all of your system data
in a single, centralized platform. Connect
any data, in any format, from any source
to visualize and query together using any
syntax for extensive event correlation
and streamlined troubleshooting.

Coralogix enables full system visibility
and can correlate real-time insights
with specific releases without the
restrictive costs of other solutions.

Ensure End-to-End
Observability for your
CI/CD Pipeline

 Reduce MTTR
 Improve Build Quality
 Optimize Costs

“On the first day, and without any customization whatsoever,

we already received new insights that we were not able to see before. A

week in, and our Ops teams across the board were already able to get so

much more out of our logs.”

Dekel Shavit | VP of Operations & CISO at BioCatch

Investigate & Correlate
Issues Across Releases

View all of your raw logs from your archive and
our hot index, plus all ingested and generated
metrics data, in the same place. Leverage advanced
clustering and data aggregation features to improve
feedback loops and streamline troubleshooting.

Improve Build Quality with
Automated Version Benchmarks

Generate version benchmarks when new code is
released, and integrate them directly to any

deployment pipeline to enable teams to reduce
issue resolution time, decrease maintenance
costs, and improve customer satisfaction.

Scale Effortlessly and
Continuously Optimize Costs

Coralogix scales effortlessly alongside your system
growth and can easily ingest data from new
sources. Using breakthrough data prioritization,
Coralogix is able to reduce your total cost of
ownership and ensure that data costs don’t
increase exponentially as your systems grow.

https://bit.ly/3IiTsX7

PAGE 19DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

CASE STUDY

CHALLENGE
Armis is working with a massive data pipeline, processing an average of

10B events and ingesting about 3.7TB of log data every day. The R&D team

needed a centralized observability platform to help monitor their data,

improve their build pipelines, and manage their hybrid cloud infrastructures

at scale.

When it came to the CI/CD process, build times averaged around two hours,

and the teams didn't have good visibility into which tests were failing or

causing delays in the build.

As new features and services were added, more event data was created.

The only way for teams to control the amount of data ingested was to

block it at the client-side, which required deployment cycles and caused

coverage gaps.

SOLUTION
With data from their release pipeline being sent to Coralogix, Armis

accelerated time to market while improving stability and quality. Overall, the

integration process took only a few hours, with the Coralogix support team

available 24x7 to assist.

Now, the Armis team has a dashboard with complete insights into the

slowest tests, produced builds, P95 and P99 response times, failed tests,

successful tests, time spent on each build, and more. This way, they can

easily pinpoint problems in their build systems without any downtime.

Using Coralogix, Armis can zoom into every detail to further analyze the

current status of their applications. As a result, developer productivity has

increased due to efficiency, centralization, and ease of use.

RESULTS
Immediately upon integration with the Coralogix platform, Armis was able to

identify and resolve numerous issues and improve its build system overall. As

a result, it has improved efficiency to save both time and money, specifically:

• Median build time was reduced from two hours to five minutes

• Cached artifacts increased from five percent to 90 percent

• The team can run 20 steps in parallel, compared to the original three

COMPANY
Armis

COMPANY SIZE
450+ employees

INDUSTRY
Device Security

PRODUCTS USED
Coralogix, AWS, Jenkins+Bazel

PRIMARY OUTCOME
Armis implemented centralized

observability to improve their CI/CD

process and build quality.

"We ship all of our logs to Coralogix

— test logs, pipeline logs, container

building logs, Bazel logs. Those logs

are processed and turned into metrics.

We then monitor them in a dashboard

which allows us to pinpoint exact

problems.”

— Roi Amitay,

Head of DevOps, Armis

CREATED IN PARTNERSHIP WITH

Case Study: Armis
How Armis Improved Their CI/CD Process and Build Quality

PAGE 20DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

CONTRIBUTOR INSIGHTS

DevOps is a hot topic that is quickly becoming the way of software development. It aims to promote development speed and

reduce costs while increasing productivity and efficiency in your organization. DevOps is powered by automating your entire

development, delivery, and operations processes. With continuous integration (CI) and continuous delivery (CD), you can do

more with less, so it is beneficial to start implementing these concepts into your company as early as possible.

What Is DevOps?
DevOps is a cultural phenomenon used by companies that like to release quality software fast. It is done by automating the

entire development and delivery process with the help of techniques and tools. However, it is not just a set of tools but a

broader movement that focuses on how to improve the flow of software by streamlining the processes and mindset.

The idea behind DevOps is to have an end-to-end automated pipeline from Dev (development) to Ops (operations). This way,

the software moves quickly and can be tested as it moves through different phases of delivery and deployment. Continuous

integration and continuous delivery become an essential part of the DevOps initiative and carry a lot of importance.

DEVOPS VS. TRADITIONAL SOFTWARE DEVELOPMENT
Over many years with traditional software development methodologies, development and operations teams have always been

treated as separate entities. They each focused on their own efforts, which often resulted in a lack of communication between

the two groups. The DevOps movement solves this particular problem by enriching team collaboration.

There are four major differences between DevOps and traditional software development:

1. DevOps can be viewed as a natural extension of the Agile movement, focusing on how to break down communication

barriers between development and operations.

2. In the traditional software development lifecycle model, projects move through linear and sequential phases without

rapid feedback loops or ongoing iterations, whereas the DevOps approach is more iterative.

3. The traditional software development approach takes a lot of time to deliver software projects because everybody works

on a big chunk of software without proper planning. In contrast, DevOps work is divided into small batches, with each

batch delivered quickly and then iterated on rapidly.

4. The traditional software development approach follows sequential steps that are hard to bypass, like gathering

requirements, planning, writing code, testing, deploying to production, etc. But it doesn't work that way in the DevOps

world — testers test the code alongside developers so that things don't have to be redone when problems arise. This

makes for a more streamlined and efficient software development lifecycle.

Introduction to CI/CD
Continuous integration and continuous delivery (CI/CD), as an iterative process, requires developers to have a working build of

the application on which they will release new features. It is a system that allows teams to integrate changes quickly without

sacrificing quality or safety.

How to Enable CI/CD
to Boost the Potential
of DevOps
Achieve the Need for Speed in Software Delivery

By Pavan Belagatti, Developer Advocate at Harness

PAGE 21DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

CI/CD is composed of three core tenets: continuous integration, continuous testing, and continuous delivery.

CI/CD works by using the principles of automation. When code is committed to the repository, it triggers a pipeline of build

tasks that executes the following steps:

1. Check out the latest version of code from the repository

2. Perform compilation and unit tests

3. Generate artifacts such as documentation or reports on the build status (whether everything passes)

4. Start deployment on a staging environment (i.e., an identical copy of production)

WHY CI/CD?
Continuous integration and continuous delivery can be a blessing to both developers and customers. They allow you to test

your code, find bugs, and fix them quickly before your customer has even had the chance to notice. In addition, once you have

a working build on which you will release new features, CI/CD allows you to deploy it automatically to a staging environment

that is identical to your production environment. This way, you don't have to rebuild the entire application every time it needs

an update.

CI/CD is beneficial for developers because it enables them to work more efficiently and productively. CI/CD tools are of value to

the developer because they can automate tasks like testing and deploying, which saves them time. For example, when a new

build is ready, they can use CI/CD to automatically deploy that build to a staging environment or their customer's production

environment. This way, tests are already in place before the update is live, so any new bugs will be caught before they make it

into the hands of your customers.

CI AND CD FOR AUTOMATION
DevOps usually revolves around these simple pillars:

• CI (continuous integration)

• CD (continuous delivery)

• Continuous testing

• Containerization

• Continuous monitoring

As discussed above, CI/CD helps you automate releasing software from development to production by breaking down the

process into stages. CI is the automated testing of code changes before they are released to production. CD is the automated

release of code from development to production environments. Continuous monitoring ensures everything is always running

smoothly. Containerization forms an integral part of the DevOps process, as it helps package the software and move it along

the pipeline stages, making it easy for developers. It became popular with platforms like Docker that help companies package

and ship their applications quickly. Most of the CI/CD tools today work with containerization in mind.

HOW TO IMPLEMENT CI/CD IN YOUR ORGANIZATION

BUILDING THE RIGHT MINDSET
If you aren’t a developer, learning to think like one is just as important as the tools in CI/CD. To be successful with CI/CD, you

need to know how to automate and modify your current processes. You also need to be able to work closely with developers.

When developing software, an individual or team will have to go through different stages of development, and it’s important

to understand them to communicate effectively with the development team. These stages include research and analysis,

architecture, design, coding, testing, release, and so on.

CHOOSING THE RIGHT TOOLS
There are various tools available for CI/CD, but before you decide which one to use, it's important to understand what your

goals are. For example, what parts of your application will you want to integrate? Do you need deployments? And how many

people will be working on the code? Once you have an idea of what features you'll want to implement in CI, it becomes easier

PAGE 22DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

to choose which tool is best for your project. In addition to tools, hiring the right set of DevOps people can also help you quickly

organize things and make decisions.

ADDING CI/CD INTO YOUR DEVELOPMENT PROCESS
It’s not enough to just set up CI/CD and forget about it. You also need to make sure you’re using it correctly. For example, there

are a number of best practices that can help you increase your efficiency and reduce operational costs:

• Using pipelines – Developers should create a pipeline that goes from code check-in, through tests, and into production.

This will allow developers and testers to collaborate more effectively on the process, as they both know what stage the

code is in.

• Automating release management – The best way to do this is by setting up a series of automated release gates for each

environment. This will help ensure that all bugs get caught before being released into your production environment.

• Monitoring every step of the way – You also want to keep an eye on how long it takes for jobs to run in CI/CD

environments so you can optimize the entire process. The longer it takes for something to run, the more expensive it

becomes — and the less time your team actually has available for developing new features or fixing bugs.

CAN YOU USE CI AND CD SEPARATELY?
CI is necessary for any software development project, but CD adds an additional layer to CI in the DevOps automation

framework. We often see this confusion about whether to use CI, CD, or both. There are many benefits to using CI/CD together

when developing and deploying your software, but sometimes it can be overkill for certain projects. You may just need CI. For

example, if you're working on a small web application with a few developers, there's no point in spending the time and money

required to set up CD. But for big organizations and startups working on big projects, both CI and CD help developers focus

better on their jobs.

Conclusion
CI takes the first step toward a successful DevOps approach. CD goes a little further to change software development by

deploying software multiple times a day with confidence. Automation is key to any successful CI/CD strategy, but it doesn't

stop there; security is becoming a high priority to keep the software development pipeline clean and to minimize the attack

surface. Successful implementation of CI/CD with the right culture, mindset, and people can help you win in this highly

complicated DevOps landscape.

Pavan Belagatti, Developer Advocate at Harness
@pavanshippable on DZone | @Pavan_Belagatti on Twitter

@pavan-belagatti-growthmarketer on LinkedIn

Pavan is a global DevOps influencer, tech storyteller, and guest author at various publications. He has
written hundreds of articles on cloud-native technologies. Pavan is on a mission to help developers

deploy software with ease. He is currently working at Harness, the industry's first continuous-delivery-as-a-service
platform as a developer advocate. In his free time, he likes singing and watching Bollywood movies :).

https://dzone.com/users/2879134/pavanshippable.html
https://twitter.com/Pavan_Belagatti
https://www.linkedin.com/in/pavan-belagatti-growthmarketer/

PAGE 23DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

CONTRIBUTOR INSIGHTS

Continuous integration (CI) and continuous delivery (CD) are crucial parts of developing and maintaining any cloud-native

application. From my experience, proper adoption of tools and processes makes a CI/CD pipeline simple, secure, and

extendable. Cloud native (or cloud based) simply means that an application utilizes cloud services. For example, a cloud-native

app can be a web application deployed via Docker containers and uses Azure Container Registry deployed to Azure Kubernetes

Services or uses Amazon EC2, AWS Lambda, or Amazon S3 services.

In this article, we will:

• Define continuous integration and continuous delivery

• Review the steps in a CI/CD pipeline

• Explore DevOps and IaC tools used to build a CI/CD process

An Overview of CI/CD
The continuous integration process is when software engineers combine all parts of the code to validate before releasing

tested applications to dev, test, or production stages. CI includes the following steps:

1. Source control – Pulls the latest source code of the application from source control.

2. Build – Compiles, builds, and validates the code — or creates bundles and "linting" in terms of JavaScript/Python code.

3. Test – Runs unit tests and validates coding styles.

Following CI is the continuous delivery process, which includes the following steps:

1. Deploy – Places prepared code into the test (or stage) environment.

2. Testing – Runs integration and/or load tests. This step is optional as an application can be small and not have a huge load.

3. Release – Deploys an application to the development, test, and production stages.

In my opinion, CI and CD are two parts of one process. However, in the cloud-native world, you can implement CD without CI.

You can see the whole CI/CD process in the diagram below:

Figure 1

CI/CD for Cloud-Native
Applications
Building Your CI/CD Process With DevOps and IaC Tools

By Boris Zaikin, Software & Cloud Architect at Nordcloud GmbH

PAGE 24DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

The Importance of CI/CD in Cloud-Native Application Development
Building a successful cloud-native CI/CD process relies on the Infrastructure-as-Code (IaC) toolset. Many cloud-native

applications have integrated CI/CD processes that include steps to build and deploy the app and provision and manage its

cloud resources.

HOW IAC SUPPORTS CI/CD
Infrastructure as Code is an approach where you can describe and manage the configuration of your application's

infrastructure. Many DevOps platforms support the IaC approach, integrating it directly into the venue — for example, Azure

DevOps, GitHub, GitLab, and Bitbucket support YAML pipelines. With the YAML pipeline, you can build CI/CD processes for your

application with infrastructure deployment. Below, you can see DevOps platforms that can easily be integrated with IaC tools:

• Azure Resource Manager, Bicep, and Farmer

• Terraform

• Tekton

• Pulumi

• AWS CloudFormation

Building a Successful Cloud-Native CI/CD Process
In many cases, the CI/CD process for cloud-native applications includes documenting and deploying infrastructure using an

IaC approach. The IaC approach allows you to:

• Prepare infrastructure for your application before it is deployed

• Add new cloud resources and configuration

• Manage existing configurations and solve problems like "environment drift"

Environment drift problems appear when teams have to support multiple environments manually. Drift can lead to an

inconsistent environment setting that causes application outages. A successful CI/CD process with IaC relies on what tool and

platform you use.

Let's have a look into the combination of the most popular DevOps and IaC tools.

AZURE DEVOPS
Azure DevOps is a widely used tool to organize and build your cloud-native CI/CD process, especially for Azure Cloud. It

supports UI and YAML-based approaches to building pipelines. I prefer using this tool when building an automated CI/CD

process for Azure Cloud. Let's look at a simple YAML pipeline that creates a virtual machine (VM) in Azure DevTest Labs:

.
jobs:
- deployment: deploy
 displayName: Deploy
 pool:
 vmImage: 'ubuntu-latest'
 environment: ${{ parameters.environment }}

 strategy:
 runOnce:
 deploy:
 steps:
 - checkout: self
 - task: AzurePowerShell@4
 displayName: 'Check vm-name variable exists'
 continueOnError: true

Code continues on next page

https://docs.microsoft.com/en-us/azure/devops/pipelines/yaml-schema/?view=azure-pipelines
https://docs.microsoft.com/en-us/azure/devtest-labs/devtest-lab-overview

PAGE 25DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

 inputs:
 azureSubscription: ${{ parameters.azSubscription }}
 scriptType: "inlineScript"
 azurePowerShellVersion: LatestVersion
 inline: |
 $vm_name="$(vm-name)"
 echo $(vm-name) - $vm_name
 #if ([string]::IsNullOrWhitespace($vm_name))
 {
 throw "vm-name is not set"
 }

 - task: AzureResourceManagerTemplateDeployment@3
 displayName: 'New deploy VM to DevTestLab'
 inputs:
 deploymentScope: 'Resource Group'
 azureResourceManagerConnection: ${{ parameters.azSubscription }}
 subscriptionId: ${{ parameters.idSubscription }}
 deploymentMode: 'Incremental'
 resourceGroupName: ${{ parameters.resourceGroup }}
 location: '$(location)'
 templateLocation: 'Linked artifact'
 csmFile: templates/vm.json
 csmParametersFile: templates/vm.parameters.json
 overrideParameters: '-labName "${{parameters.devTestLabsName}}"
 -vmName ${{parameters.vmName}} -password ${{parameters.password}}
 -userName ${{parameters.user}}
 -storageType
.

To simplify the pipeline listing, I've shortened the example above. As you can see, the pipeline code can also be generic;

therefore, you can reuse it in multiple projects. The pipeline's first two steps are in-line PowerShell scripts that validate and print

required variables. Then this pipeline can be integrated easily into Azure DevOps, as shown in the image below:

Figure 2

The last step creates the VM in Azure DevTest Labs using Azure Resource Manager (ARM) templates and is represented via the

JSON format. This step is quite simple: It sends (overrides) variables into the ARM scripts, which Azure uses to create a VM in the

DevTest Labs.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://docs.microsoft.com/en-us/azure/templates/microsoft.devtestlab/2015-05-21-preview/labs/virtualmachines?tabs=json

PAGE 26DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

AWS CLOUDFORMATION
AWS CloudFormation is an IaC tool from the AWS Cloud stack and is intended to provision resources like ES2, DNS, S3 buckets,

and many others. CloudFormation templates are represented in JSON and YAML formats; therefore, they can be an excellent

choice to build reliable, cloud-native CI/CD processes. Also, many tools like Azure DevOps, GitHub, Bitbucket, and AWS

CodePipelines have integration options for CloudFormation.

Below is an example of what an AWS CloudFormation template may look like, which I've shortened to fit in this article:

{
 "AWSTemplateFormatVersion" : "2010-09-09",
 "Parameters" : {
 "AccessControl" : {
 "Description" : " The IP address range that can be used to access the CloudFormer tool. NOTE:
We highly recommend that you specify a customized address range to lock down the tool.",
 "Type": "String",
 "MinLength": "9",
 }
 },
 "Mappings" : {
 "RegionMap" : {
 "us-east-1" : { "AMI" : "ami-21341f48" },
 }
 }
 "Resources" : {
 "CFNRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Statement": [{
 "Effect": "Allow",
 "Principal": { "Service": ["ec2.amazonaws.com"] },
 "Action": ["sts:AssumeRole"]
 }]
 },
 "Path": "/"
 }
 },
 }
}

CloudFormation templates contain sections including:

• Parameters – You can specify input parameters to run templates from the CLI or pass data from AWS CodePipeline (or

any other CI/CD tool).

• Mappings – You can match the key to a specific value (or set of values) based on a region.

• Resources – You can declare the resources included, answering the "what will be provisioned" question, and you can

adjust the resource according to your requirement using a parameter.

AWS CloudFormation templates look similar to Azure ARM templates as they do the same work but for different cloud providers.

GOOGLE CLOUD DEPLOYMENT MANAGER
Google Cloud (GC) offers Cloud Deployment Manager, the all-in-one tool that includes templates that describe resources for

provisioning and templates to build CI/CD pipelines. The templates support:

• Python 3.x

• Jinja 2.10.x

• YAML

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html#:~:text=set%20of%20outputs-,Template%20sections,-Templates%20include%20several
https://cloud.google.com/deployment-manager/docs
https://docs.python.org/3/
https://jinja.palletsprojects.com/en/2.10.x/

PAGE 27DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

Let's explore a deployment of the VM using Jinja templates — it looks common to YAML:

resources:
- type: compute.v1.instance
 name: {{env["project"]}}-deployment-vm
 properties:
 zone: {{properties["zone"]}}
 machineType:https://www.googleapis.com/compute/v1/projects/{{env["project"]}}/zones/
{{properties["zone"]}}/machineTypes/f1-micro
 disks:
 - deviceName: boot
 type: PERSISTENT
 boot: true
 autoDelete: true
 initializeParams:
 sourceImage: https://www.googleapis.com/compute/v1/projects/debian-cloud/global/images/family/
debian-9
 networkInterfaces:
 - network: https://www.googleapis.com/compute/v1/projects/{{env["project"]}}/global/networks/
default
 accessConfigs:
 - name: External NAT

 type: ONE_TO_ONE_NAT

The example above is similar to ARM and CloudFormation templates as it describes resources to deploy. In my opinion, the

YAML/Jinja 2.10.x format works better than the JSON-based structure because:

• YAML increases readily and can read much faster than JSON

• Teams can find and fix errors in YAML and Jinja faster than in JSON

• YAML pipelines (with small adaptations) can be reused on many other platforms

You can find an extended version of this example in the GitHub gist.

TEKTON AND KUBERNETES
Tekton, supported by the CD Foundation (part of the Linux Foundation), is positioned as an open-source CI/CD framework

for cloud-native applications based on Kubernetes. The Tekton framework's components include:

• Tekton Pipelines – Most essential and are intended to build CI/CD pipelines based on Kubernetes Custom Resources.

• Tekton Triggers – Provide logic to run pipelines based on an event-driven approach.

• Tekton CLI – Built on top of the Kubernetes CLI and allows you to run pipelines, check statuses, and manage

other options.

• Tekton Dashboard and Hub – Use web-based graphical interfaces to run pipelines and observe pipeline execution

logs, resource details, and resources for the entire cluster (see dashboard in Figure 3 on next page).

https://jinja.palletsprojects.com/en/2.10.x/
https://gist.github.com/ryu1kn/3f53143e743e2553030f3d7e93b0684e
https://tekton.dev/
https://cd.foundation/
https://www.linuxfoundation.org/projects/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://github.com/tektoncd/dashboard/blob/main/README.md
https://hub.tekton.dev/

PAGE 28DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

Figure 3

I like the idea behind Tekton Hub — that you can share your pipelines and other reusable components. Let's look at a Tekton

Pipeline example:

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: say-things
spec:
 tasks:
 - name: first-task
 params:
 - name: pause-duration
 value: "2"
 - name: say-what
 value: "Hello, this is the first task"
 taskRef:
 name: say-something
 - name: second-task
 params:
 - name: say-what
 value: "And this is the second task"
 taskRef:
 name: say-something

The pipeline code above is written in the native Kubernetes format/manifests and represents a set of tasks. Therefore, you can

build native cross-cloud CI/CD processes. In the tasks, you can add steps to operate with Kubernetes resources, build images,

print information, and many other actions. You can find the complete tutorial for Tekton Pipelines here.

https://developers.redhat.com/blog/2021/01/13/getting-started-with-tekton-and-pipelines#run_in_parallel_or_sequentially

PAGE 29DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

TERRAFORM, AZURE BICEP, AND FARMER
Terraform is a leading platform for building reliable CI/CD processes based on the IaC approach. I will not go in depth on

Terraform as it requires a separate article (or even book). Terraform uses a specific language that simplifies building

CI/CD templates. Also, it allows you to reuse code parts, adding dynamic flavor to the CI/CD process. Therefore, you can build

templates that are much better than ARM/JSON templates. Let's see a basic example of Terraform template code:

terraform {
 required_providers {
 }
 backend "remote" {
 organization = "YOUR_ORGANIZATION_NAME"
 workspaces {
 name = "YOUR_WORKSPACE_NAME"
 }
 }

}

The basic template above contains the resources, providers, and workspace definition. The same approach follows the Azure

Bicep and Farmer tools. These Terraform analogs can drastically improve and shorten your code. Let's look at the Bicep

example below:

param location string = resourceGroup().location
param storageAccountName string = 'toylaunch${uniqueString(resourceGroup().id)}'

resource storageAccount 'Microsoft.Storage/storageAccounts@2021-06-01' = {
 name: storageAccountName
 location: location
 sku: {
 name: 'Standard_LRS'
 }
 kind: 'StorageV2'
 properties: {
 accessTier: 'Hot'
 }

}

The Bicep code above deploys storage accounts in the US region. You can see that the JSON ARM example acts the same. In

my opinion, Terraform and Azure Bicep are shorter and much easier to understand than ARM templates. The Farmer tool can

also show impressive results in readability and type-safe code:

 // Create a storage account with a container
let myStorageAccount = storageAccount {
 name "myTestStorage"
 add_public_container "myContainer"
}

// Create a web app with application insights that's connected to the storage account.
let myWebApp = webApp {
 name "myTestWebApp"
 setting "storageKey" myStorageAccount.Key
}

// Create an ARM template
let deployment = arm {
 location Location.NorthEurope
 add_resources [

Code continues on next page

https://www.terraform.io/docs
https://docs.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview?tabs=json
https://compositionalit.github.io/farmer/

PAGE 30DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

 myStorageAccount
 myWebApp
]
}

// Deploy it to Azure!
deployment

|> Writer.quickDeploy "myResourceGroup" Deploy.NoParameters

Above, you can see how to deploy your web application to Azure in 20 lines of easily readable and extensible code.

PULUMI
The Pulumi framework follows a different approach to building and organizing your CI/CD processes: It allows you to deploy

your app and infrastructure using your favorite programming language. Pulumi supports Python, C#, TypeScript, Go, and many

others. Let's look at the example below:

public MyStack()
{
 var app = new WebApplication("hello", new()
 {
 DockerImage = "strm/helloworld-http"
 });

 this.Endpoint = app.Endpoint;

}

This part of the code deploys the web app to the Azure cloud and uses Docker containers to spin up the web app. You can find

examples of how to spin up the web app in an AKS cluster as well as from the Docker container here.

Conclusion
Building a cloud-native CI/CD pipeline for your application can be a never-ending story if you don't know the principles, tools,

and frameworks best suited for doing so. It is easy to get lost in various tools, providers, and buzzwords, so this article aimed to

explain what CI/CD cloud-native applications are and walk you through the widely used tools and principles of building reliable

CI/CD pipelines. Having this guide helps you to feel comfortable while designing CI/CD processes and choosing the right tools

for your cloud-native application.

Boris Zaikin, Software & Cloud Architect at Nordcloud GmbH
@borisza on DZone | @boris-zaikin on LinkedIn | boriszaikin.com

I'm a Certified Software and Cloud Architect who has solid experience designing and developing
complex solutions based on the Azure, Google, and AWS clouds. I have expertise in building distributed
systems and frameworks based on Kubernetes and Azure Service Fabric. My areas of interest include
enterprise cloud solutions, edge computing, high load applications, multitenant distributed systems,
and IoT solutions.

https://www.pulumi.com/registry/packages/azure-native/how-to-guides/azure-cs-net5-aks-webapp/
https://www.pulumi.com/registry/packages/azure-native/how-to-guides/azure-cs-net5-aks-webapp/
https://dzone.com/users/3123245/borisza.html
https://www.linkedin.com/in/boris-zaikin/
https://www.boriszaikin.com/

PAGE 31DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

CONTRIBUTOR INSIGHTS

Enterprises are embracing cloud-native technologies to migrate their monolithic services to a microservices architecture.

Containers, microservices, container orchestration, automated deployments, and real-time monitoring enable you to take

advantage of cloud-native capabilities. However, the infrastructure required to run cloud-native applications differs from

traditional ones.

This article will describe Infrastructure as Code, its benefits, and the popular IaC tools. You will also learn how to model

infrastructure as part of the CI/CD pipeline and incorporate it into the standard development lifecycle.

What Is Infrastructure as Code?
IaC helps to manage and provision infrastructure resources through code and automation. In a traditional on-premises

environment, operators log into the server and execute a series of commands via the command line or console to perform

changes. However, these manual configurations are prone to drifts and create inconsistent environments. It's also a time-

consuming process to deploy similar changes across your infrastructure. There is no quick way to verify the correctness of

these manual changes. If there are issues, it isn't easy to recreate them.

In comes IaC to simplify the management and provisioning of your infrastructure resources. With IaC, you don't make manual

changes to servers, instances, containers, or environments. Both the creation and modification of the resources are automated.

IaC is the practice of using code to create, describe, and manage infrastructure resources.

Infrastructure as Code Benefits
Let's now take a close look at how IaC can benefit your organization.

INCREASED PRODUCTIVITY THROUGH AUTOMATION
Making infrastructure changes and deploying them is a repetitive process, and it is time-consuming if your developers/

operations team needs to do these manually in a recurring interval. With IaC, you can focus on coding and be more productive

by automating the infrastructure deployments. As a result, IaC enables faster time to market for your business features.

REPEATABLE DEPLOYMENTS WITH HIGH PREDICTABILITY
Having your infrastructure defined in source control lets you automate the deployment process and enable developers to

follow the software development lifecycle for infrastructure changes. It also empowers developers to perform successful

deployments backed by efficient practices like peer review, static code analysis, and automated testing.

IMPROVED CONSISTENCY WITH MINIMAL CONFIGURATION DRIFT
Performing infrastructure changes manually can lead to inconsistency between the servers and is generally the primary

reason for configuration drifts. Applying changes manually is error-prone, and so IaC saves the day by standardizing the

infrastructure modification process. The deployment process is faster, repeatable, and more consistent with automation and

version control.

Infrastructure
Provisioning for Cloud-
Native Applications

By Samir Behara, Platform Architect at EBSCO

PAGE 32DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

DOCUMENTED PROCESS FOR DEPLOYING CHANGES
It would be best not to completely rely upon your sysadmin or operations team to deploy infrastructure changes. This

increased dependency on selected operators to make server changes can create blocker scenarios when they are not available.

In the long run, it is not a scalable solution. Having the infrastructure code in source control provides visibility to everyone in

your organization about the current state. Developers can deploy infrastructure changes if all the stages in the CI/CD pipeline

pass. If there are any issues, it's easy to troubleshoot by looking at the change history in the source control.

Figure 1: Infrastructure as Code in action

Infrastructure as Code Tools
Some open-source IaC tools can be categorized into various groups:

• Configuration management tools – Chef, Puppet, and Ansible are popular tools that allow you to install, update, and

manage resources on existing infrastructure.

• Server templating tools – Tools like Docker and Vagrant allow you to create an image from a configuration file, which

is then used to provision infrastructure in a repeatable manner. They promote the idea of an immutable infrastructure,

which we will explain later in this article.

• Container orchestration tools – Tools like Kubernetes and Docker Swarm allow you to orchestrate container workloads in

a dynamic cloud-native landscape.

• Provisioning tools – Tools like Terraform, Azure Resource Manager, Google Cloud Deployment Manager, and AWS

CloudFormation allow you to provision servers and other resources in the respective cloud environment.

Figure 2: Infrastructure-as-Code tools

PAGE 33DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

Mutable vs. Immutable Infrastructure
With immutable infrastructure, you create a new server with the revised configuration if you want to modify an existing server.

In a cloud-native environment, where containers are spinning up and down every minute, immutability is a required feature. You

should package your application and its dependencies into a container image, and as you want to modify the configuration, you

deploy a new container version.

The pets vs. cattle analogy for infrastructure management is popular in the dynamic container space. You treat your

infrastructure resources like cattle so that you can delete and build them from scratch when a configuration change is required.

Pets are indispensable resources where you make configuration changes in place. Immutability helps simplify your operations,

minimize drift, boost consistency between environments, and build a secure infrastructure.

Declarative vs. Procedural Approach
With a procedural approach, you write separate scripts to achieve the desired state. Over time, you tend to have many scripts

that have been applied to your environment, and you can review the modifications via change history. The order of execution

of the scripts matters, or else you end up with a different end state. Tools like Chef and Puppet follow the procedural style of

infrastructure management. Please find below some of the frequently used Puppet commands:

Table 1

Command Action

puppet agent Retrieve configuration from a remote server and apply to localhost

puppet apply Apply individual manifests to the local system

puppet module Find, install, and manage modules in the puppet repository

puppet describe Displays metadata about puppet resource types

puppet config Review and modify settings in the puppet configuration file

With the declarative approach, you maintain the desired state in a configuration template. If you want to make any

modifications, you update the same template to reflect the desired state and let the IaC tool generate the difference script

and apply it to the environment. Tools like Terraform follow the declarative approach, where the code in source control always

reflects the current state of the infrastructure. The declarative approach helps you to create reusable code since you are just

focused on describing the desired state and offloading the complexity of syncing the current and desired state to the IaC tool.

Using Terraform to Manage Infrastructure
Terraform is a cloud-agnostic, open-source tool for infrastructure provisioning. Created by HashiCorp in 2014, Terraform uses

HashiCorp Configuration Language (HCL) to describe infrastructure code. It supports many providers and can help manage

resources in individual cloud providers, such as AWS, Azure, and Google Cloud. Terraform is backed by a large and growing

community. The primary function of Terraform is to help you create, modify, and destroy infrastructure resources. To provision

resources using Terraform, you need to use the following commands:

Table 2

Command Action

terraform init Initializes the working directory that contains the configuration files

terraform plan Compares the current state and desired state and creates an execution plan for making changes

terraform apply Applies the changes that were proposed by the Terraform plan and ensures that the desired
state is reached

terraform destroy Cleans up the infrastructure resources that are managed by the configuration files

https://iamondemand.com/blog/devops-concepts-pets-vs-cattle/

PAGE 34DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

Figure 3: Terraform lifecycle

Infrastructure Automation With GitOps
GitOps workflows apply DevOps best practices for application development (version control, code review, automated

deployments, etc.) to infrastructure deployments. GitOps is based on the declarative model, where configuration files get

stored in Git, and approved changes get automatically deployed to the environment. As shown in Figure 4, the GitOps operator

ensures that the desired state stored in Git is in sync with the actual state of the deployed infrastructure. Enterprises are

rapidly adopting GitOps to manage their Kubernetes cloud-native environments at scale. Applying GitOps practices enables

continuous deployments with proper auditing and high reliability.

Figure 4: GitOps pipeline

Conclusion
IT infrastructures are growing exponentially and embedding automation into every stage of the delivery pipeline ensures

faster and more consistent deployments. Automating your IaC processes is as important as the automation of your application

deployment. You can leverage multiple IaC tools together to automate your infrastructure management. Each of the tools

mentioned in this article has its strengths and weaknesses, so having a sound understanding of those and selecting the right

tool that fits your use case is critical. IaC is the future, and organizations are readily embracing it to increase the reliability of

their infrastructure.

Samir Behara, Platform Architect at EBSCO
@samirbehara on LinkedIn | Author of samirbehara.com | @samirbehara on DZone

Samir Behara is a Platform Architect with EBSCO and builds software solutions using cutting edge
cloud-native technologies. He is a Microsoft Data Platform MVP with over 16 years of IT experience.
Samir is a frequent speaker at technical conferences and is the Co-Chapter Lead of the Steel City SQL
Server user group.

https://www.linkedin.com/in/samir-behara-78953870/
https://samirbehara.com/
https://dzone.com/users/3412089/samirbehara.html

PAGE 35DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

CONTRIBUTOR INSIGHTS

What Is GitOps and Why Is it Important for an Organization?
GitOps is a model to automate and manage infrastructure and applications. This is done by using the same DevOps best

practices that many teams already use, such as version control, code review, and CI/CD pipelines. While implementing

DevOps, we've found ways to automate the software development lifecycle, but when it comes to infrastructure setup and

deployments, it's still mostly a manual process. With GitOps, teams can automate the infrastructure provisioning process.

This is due to the ability to write your Infrastructure as Code (IaC), version the code in a Git repository, and apply continuous

deployment principles to your cloud delivery.

Companies have been adopting GitOps because of its great potential to improve productivity and software quality. GitOps best

serves organizations that develop cloud-native solutions based on containerization and microservices.

How Does GitOps Improve the Lives of Developers and Operations?
The increased infrastructure automation that comes with GitOps creates the opportunity to develop a more "self-service"

approach for application developers. Rather than negotiating for cloud resources, skilled developers can use Infrastructure as

Code to declare their cloud resource requirements. This becomes the desired state of the infrastructure, stored centrally and

serving as the immutable reference point between the requirements as stated in the code and the actual state of the live

environment.

The self-service approach is liberating for developers. It makes them more productive, allows them to focus on innovation, and

gets their apps to market more quickly. Additionally, it avoids the mire that can be introduced when developers and operators

need to negotiate resources.

On the other hand, there is a frequent misconception that the increased automation of operations means that Ops teams

need fewer people and Ops's role in the pipeline is marginalized. Our view is the exact opposite; we believe that modern

approaches such as GitOps and the Internal Developer Platform provide exciting opportunities for Ops (Platform Team) to

enhance their skills and create more value for the organization. In a high-performing, cloud-native software development

organization that embraces GitOps, you are likely to find a growing Platform team that is helping to make it all work.

The actual technology used by the Platform team may vary. In some cases, this could just be a closed PaaS solution. In others,

it could be a combination of various tools to create a bespoke platform tailored to the organization's needs. This gives them

the ability to exert more influence and control over the infrastructure resources and architecture and create "guardrails" that

enforce a simple, efficient, and standardized approach to cloud-native application deployment.

GitOps helps improve the collaboration between developers and operation teams, increases their productivity, and increases

deployment frequency. It enhances the developers' experience by enabling them to contribute with features without the need

to know the underlying infrastructure. At the same time, it gives control to operations with code reviews and approvals. With

these improvements, teams can release faster and more secure to maintain their position in the market.

What Are the Three Must-Do Steps to Implement GitOps?
To experience the most prominent advantages of implementing a GitOps model in your company, like standardization and

consistency in your overall workflow, here is what you need to consider.

3 Steps to Developing a
Successful GitOps Model
By Marija Naumovska, Co-Founder & Technical Writer at Microtica

https://internaldeveloperplatform.org/

PAGE 36DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

EVERYTHING AS CODE

• Declare your IaC.

• Use a Git repository for your IaC development.

• Replicate the practices that are part of your application code lifecycle to your infrastructure code as well.

• Using technologies like Docker and Kubernetes, define your environment, versions, configurations, and dependencies

as code, and ensure they get enforced on runtime.

• Gradually extend the GitOps model onto anything that can be defined as code, like security, policy, compliance, and all

operations beyond infrastructure.

D

Figure 1: Everything as code

eclarative code improves readability and maintenance. CloudFormation, Terraform, Pulumi, and Crossplane are some possible

declarative languages you can use to define the configuration of how you want your infrastructure to look.

When everything is defined as code, you can use a Git repository for your development and explore benefits, such as version

control, collaboration, and audits.

REVIEW PROCESS

A proper Git flow consists of:

• The main branch, which usually represents an environment, like dev, test, stage, prod, and the state running

on that environment.

• When developers need to introduce changes to the code, they create a new branch from the main branch.

• When the changes are ready, the developers create a pull request that should be reviewed by operations

to validate and approve. Security and compliance experts can also be involved in this stage to validate the

environment's state properly.

• Once approved, the code can be merged into the main branch and delivered to test or production.

PAGE 37DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

Using this workflow, you can track who made which change and ensure the environment has the correct version of the code.

Figure 2: GitOps workflow

If you already take advantage of the Git flow system by working with feature branches and pull requests, then you won't need

to invest much in a new process for your GitOps workflow. Furthermore, as your infrastructure (and other operations) are

defined as code, you'll be able to implement the same practices for code review.

SEPARATE BUILD AND DEPLOY PROCESS (CI AND CD)

• A CI process is responsible for building and packaging application code into container images.

• The CD process executes the automation to bring the end state in line with the system's desired state, described in the

repository code.

Ultimately, GitOps sees CI and CD as two separate processes — CI as a development process and CD as an operational process.

A GitOps approach commonly used to separate these processes is to introduce another Git repository as a mediator. This repo

contains information about the environment, and with every commit there, the deployment process is triggered. There is a

component, called the operator, residing between the pipeline and the orchestration tool. The operator constantly compares

the target state in the environment repository with the actual state in the deployed infrastructure. The operator changes the

infrastructure to fit the environment repository if it detects any changes. Also, it monitors the image registry to identify new

versions of images to deploy. This way, the CI process never touches the underlying infrastructure (e.g., the Kubernetes cluster).

Figure 3: Pull-based GitOps deployments

https://danielkummer.github.io/git-flow-cheatsheet/

PAGE 38DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

Decoupling the build pipeline from the deployment pipeline is a powerful protection against misconfigurations and helps

achieve higher security and compliance.

Conclusion
GitOps, as an operational model, uses DevOps practices known to many teams. Using GitOps, you can automate the

infrastructure provisioning process and use Git as a single source of truth for your infrastructure. Therefore, to create a

successful GitOps model, you need a declarative definition of the environment.

It would be best if you also had a pull request workflow in your team. To be able to collaborate on the infrastructure code and

create operational changes, you should open a pull request. Senior DevOps engineers and security experts then review the pull

request to validate the changes and merge them into the main branch if everything is okay.

For a full GitOps implementation, you need to have CI/CD automation for provisioning and configuration of the underlying

environment and the deployment of the defined code.

Lastly, there should be a supporting organizational culture inside the company. In our experience, a GitOps approach has

made it natural to get to a structure in which developers enjoy increased automation from self-service infrastructure resources

and platform engineers enjoy taking on a more influential role in the organization. In that regard, it's a win-win approach that

makes everyone more aligned and fulfilled.

Marija Naumovska, Co-Founder & Technical Writer at Microtica
@marulka on DZone | @mmarulka on Twitter | microtica.com

As a co-founder of Microtica, Marija helps developers get their applications deployed on the cloud in
minutes. She's a Software Engineer with 8+ years of experience, who now works as a product person and
technical writer full time. She writes about cloud, DevOps, GitOps, and Kubernetes topics.

https://dzone.com/users/4433007/marulka.html
https://twitter.com/mmarulka
http://microtica.com

PAGE 39DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

CONTRIBUTOR INSIGHTS

There have been a few breakthroughs throughout the short history of software development that have completely

revolutionized the way we write and release code. From Object-Oriented Programming to web-based languages like JavaScript

and TypeScript, these innovations have moved software engineering by leaps and bounds.

One of the more recent groundbreaking innovations is automated testing. Prior to automated testing, a large portion of the

test cases for our software were executed manually. This painstaking process has many flaws, including:

• Inconsistent execution of test cases

• Manualized setup of testing environments

• Tediousness and slowness

• Inconsistent format of test results

Automated testing — and the introduction of Continuous Integration (CI) and Continuous Delivery (CD) — has completely

transformed the quality and the cadence with which we release our software. In this article, we will delve into the CI/CD

pipeline and see how automated testing can be used to dramatically improve the quality and swiftness of our software

releases. We will also look at some of the most popular and practical tools that we can use to create our CI/CD pipelines.

The CI/CD Pipeline
In order to release software, we must fulfill a set of business needs. In some cases, these business needs include a quick set of

system tests and a suite of User Interface (UI) tests, while other releases may require more involved needs. Regardless of the

complexity, these business needs can be conceptualized as a set of steps that are executed in serial and in parallel. In the CI/CD

vernacular, each step is called a stage, and the set of ordered stages is called a pipeline. Below is an example pipeline:

Figure 1

The particular stages in the pipeline will vary based on the business needs of the project, but all pipelines will be executed

when a trigger (such as a commit) is activated. Once the execution of the pipeline starts, each stage is executed one-by-one;

when one stage successfully completes, the next stage is executed.

Continuous Test
Automation Using CI/CD
How CI/CD Has Revolutionized Automated Testing

By Justin Albano, Software Engineer at IBM

PAGE 40DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

When a set of parallel stages is reached, such as the User Acceptance Testing, Capacity Testing, and Staging, stages in the

example above, all of the stages are executed at the same time. The pipeline proceeds when all of the parallel stages are

successfully completed. For example, execution of the Deploying stage will not start until User Acceptance Testing, Capacity

Testing, and Staging successfully complete.

There is no requirement that all stages of a CI/CD pipeline must be automated, and in some cases, it can be difficult to

introduce automated test cases into a CI/CD pipeline. For example:

• Unclear business needs and specifications – In most cases, the difficulty in defining automated tests stems from a

lack of clarity about the business needs of our project (which defines our CI/CD pipeline) and the specifications of our

software under test. Before we create stages in our CI/CD pipelines, we must understand what we need to test and why

we are testing it.

• UI tests – UI tests can be difficult to automate due to the visual and fluctuating nature of UIs. We can overcome this by

using a UI test framework, such as Selenium.

• Inconsistent reporting – Many CI/CD pipeline tools include a test summary that displays the number of executed and

successful tests completed in a stage. This summary requires a consistent, well-known report to be generated by our

automated tests. We can meet this requirement by using an automated testing tool whose reporting format is widely

known, such as JUnit (or any of the xUnit frameworks) and Cucumber.

While there may be instances when manual testing is required, the greatest benefit of CI/CD pipelines is achieved when all

tests, including UI tests, are automated.

Automated Testing in the CI/CD Pipeline
The major advantage to utilizing automated testing in a CI/CD pipeline is that a single commit can be tested against a gauntlet

of tests — including unit, integration, system, performance, and acceptance tests — and then be deployed to a production

system without having any human interaction. For example, even on a large-scale project, it is possible to have a single

engineer make a commit that will automatically result in a feature being deployed to production in a few minutes or hours.

Conversely, an automated pipeline ensures that failed tests prohibit a feature from being deployed to production. For example,

if a developer adds a new feature, and a unit or integration test fails, the execution of the pipeline immediately stops, and

the feature is not deployed. The developer is then notified of the test failure and can track down the bug to the commit that

triggered the failed execution of the pipeline.

In addition to the benefits reaped for deployment and release, there are a host of benefits that automated testing brings to the

quality of the code itself:

• Documentation of its intended behavior

• Reduction in the number of regressions

• Decoupling into smaller, more independent components

• Reduction in test execution time

• Involvement of stakeholders in the generation of test specifications (i.e., acceptance tests)

Although it may not be possible for all tests in a CI/CD pipeline to be automated, in order to garner the greatest benefit from our

pipelines, we should strive to maximize the number of automated stages and, if possible, completely automate our pipelines.

Popular CI/CD Tools
There are numerous tools and frameworks that can be used to create automated CI/CD pipelines. The list below is not

comprehensive and represents only a small selection of the many excellent tools that can be used to facilitate CI/CD pipelines.

Generally, these tools can be divided into two categories: native tools and third-party tools.

NATIVE TOOLS
Native tools are CI/CD tools that are integrated directly into our repositories. For these tools, we create a configuration file that

resides alongside our source code, and when we make a commit, the repository consumes our configuration file and executes

the stages that we define.

https://www.selenium.dev/
https://junit.org/
https://cucumber.io/

PAGE 41DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

The two most popular native tools available today are:

1. GitHub Actions – An automated workflow tools that integrates directly with GitHub repositories. New pipelines, called

workflows in the GitHub Action lexicon, can be constructed by creating a new Yet Another Markup Language (YAML)

workflow file in the .github/workflows/ directory of a GitHub repository. More information about GitHub Actions can be

found in the official GitHub Action Documentation and the Getting Started with GitHub Actions Refcard.

2. GitLab CI/CD – Similar to GitHub Actions, GitLab CI/CD is integrated directly with GitLab repositories and allows

developers to create new workflows by creating a .gitlab-ci.yml file in the root of GitLab repository. More information

about GitLab CI/CD can be found in the official GitLab CI/CD documentation.

When a native tool is available, it is best to use it because it affords the greatest level of integration with a repository and the

source code managed by the repository. For example, if our code is stored in a GitHub or GitLab repository, we should use

GitHub Actions and GitLab CI/CD, respectively, by default unless we have a pressing need to use a third-party tool.

THIRD-PARTY TOOLS
Third-party tools are CI/CD tools that reside outside of our repository. For many of these tools, we create a hook in our repository

that notifies that third-party tool when a commit has been made. The tools then check out our code from our repository and

execute the configured pipeline. The two most popular third-party tools available today are:

1. Jenkins – An open-source automation server that allows developers to automate the build, test, and deployment of

their projects. Jenkins is commonly used as a standalone service, deployed by a development team. Pipelines are either

configured directly through the Jenkins UI or through the creation of a Jenkinsfile within a source code repository.

More information about Jenkins can be found in the official Jenkins Handbook.

2. CircleCI – A hosted automation service that integrates with GitHub, GitHub Enterprise, and Bitbucket. The advantage of

CircleCI is that a team does not have to deploy and maintain a CircleCI instance but, instead, can access CircleCI through

the circleci.com. What it gains in convenience, though, it loses in its narrow repository support and lack of flexibility. More

information about CircleCI can be found in the official CircleCI documentation.

While using a native tool should be our default option, there are some instances when a third-party tool may be a better choice,

such as when:

• A native tool does not provide the functionality we need

• A third-party tool allows us to utilize more computing power (i.e., a native tool may only allow us to use the resources of a

single machine or the resources associated with our repository to execute our pipeline)

• A standalone option is needed so that we can manage the CI/CD pipeline directly (i.e., we wish to manage a CI/CD server

within a firewall or company subnet)

Conclusion
Test automation and the introduction of CI/CD into software development has irrevocably changed the way that we create, test,

and release our software. While the CI/CD space continues to grow and advance, it is essential that we learn the fundamentals of

automated testing in CI/CD and select tools that best enable the time-savings and quality-improvements that CI/CD offers.

Justin Albano, Software Engineer at IBM
@albanoj2 on DZone

Justin Albano is a Software Engineer at IBM responsible for building software-storage and backup/
recovery solutions for some of the largest worldwide companies, focusing on Spring-based REST API
and MongoDB development. When not working or writing, he can be found practicing Brazilian Jiu-
Jitsu, playing or watching hockey, drawing, or reading.

https://github.com/features/actions
https://docs.github.com/en/actions
https://dzone.com/refcardz/getting-started-with-github-actions
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/ci/quick_start/
https://www.jenkins.io/
https://www.jenkins.io/doc/book/pipeline/jenkinsfile/
https://www.jenkins.io/doc/book/
https://circleci.com/
https://circleci.com/
https://circleci.com/docs/2.0/
https://dzone.com/users/1144561/albanoj2.html

PAGE 42DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

CONTRIBUTOR INSIGHTS

Automated Tests:
You Are Doing It Wrong
Over-Engineering: You Are Doing It Right

By Daniel Stori, Software Engineer at AWS

Daniel Stori, Software Engineer at AWS
@Daniel Stori on DZone | @dstori on LinkedIn | @turnoff_us on Twitter | turnoff.us

I started to code for fun on an Apple II at the end of the '80s, and professionally, in the middle of the
'90s, so I have extensive experience in the field. I love to draw comics — much more than I have been
able to create since my daughter was born. I've recently joined the AWS team to create a learning
platform based on 3D games.

https://dzone.com/users/1189863/Daniel+Stori.html
https://www.linkedin.com/in/dstori/
https://twitter.com/turnoff_us
https://turnoff.us/

PAGE 43DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

CONTRIBUTOR INSIGHTS

Continuous integration and continuous deployment are the two major components of DevOps principles. Every organization

that wants to move away from the traditional way of working has to learn, design, and implement a mature CI/CD pipeline.

Having a mature CI/CD pipeline is a good start for site reliability engineering, but alone, it’s not enough. The site reliability

engineering (SRE) methodology brings a new perspective to the software development life cycle by aiming to achieve

reliability at scale.

Drawing on my own experience of being an SRE for more than five years, I will touch on some of the key benefits I've

experienced and why it's important for SREs to be involved in the CI/CD pipeline.

SRE Engineer vs. DevOps Engineer Approach Toward CI/CD
Although DevOps and the SRE approach have many things in common, they are still two different approaches that were

created for different purposes. SRE was created after DevOps, when it became apparent that the DevOps way of working could

not tackle all issues and satisfy all requirements. That’s why we can see these different approaches toward the CI/CD pipeline,

where the most important activities of the SDLC happen. I had a chance to work as both a DevOps engineer and an SRE

engineer, and here are some differences that I observed:

I

Subject DevOps Approach SRE Approach

CI/CD pipeline Aims at establishing a CI/CD pipeline
where either there are no pipelines
at all, or the one in place has not
been properly implemented

Aims at modifying an existing pipeline and identifying
bottlenecks and problems that impact lead time

Automation in CI/CD Tries to automate everything in the
CI/CD pipeline

Takes it one step further and automates incident
management and production issues

Incident management

and CI/CD
Has to align with different parties’
engineers to apply any changes

Has more freedom to decide and execute operations in
order to mitigate issues quickly

Normal in CI/CD Having a good, working CI/CD
pipeline

There is no normal. Reliability is never taken for granted
and, it is assumed that unexpected incidents will occur.
This results in constant improvement of the CI/CD
pipeline, reducing incidents, and increasing team
maturity in mitigating issues on time.

mprovement From the Ground Up
KPIs are the core of decision-making for SRE engineers, and they become a performance dashboard that developers can see to

view the quality of their work across various metrics. This informative approach makes development more conscious and aware

of application/service performance earlier than releasing in production. Therefore, developers have a chance to identify issues

and inefficiencies much earlier than a usual development life cycle without SRE.

Why a Site Reliability
Engineer Is Important
to Your CI/CD Pipeline
By Alireza Chegini, Senior DevOps Engineer & Azure Specialist at S-RM

PAGE 44DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

SRE engineers start from the measurements and look at the existing CI/CD KPIs, if there are any. Otherwise, they define the

KPIs themselves to indicate the current status of pipelines. Then they can create a roadmap with measurable milestones to

improve the pipeline. This approach helps engineers consider various performance factors right away when they are busy with

the functionality design process.

As SRE engineers create KPIs, they need to work closely with developers to understand the system logic, architecture, and

components relations. This collaboration creates a team synergy where all engineers not only learn from one another, they

master various skills in a team and can replace each other whenever it’s needed.

Traditionally, application functionalities are the most important part of the design architecture. That’s why, sometimes,

aspects like high availability and reliability are not taken into account at the beginning. The SRE approach considers reliability,

availability, and resiliency from the design stage. This results in huge savings from development and operations up front, since

it is very costly to redesign projects if these issues surface later in production.

SRE Incident Management and CI/CD
When it comes to production incidents, it is crucial to detect issues and restore the system to its normal state. SRE practices

came as an enhancement to DevOps practices. One interesting SRE approach is that engineers can deploy new patches

during an incident without impacting the other parts of the running system. Downtime is inevitable when there is an incident

or a new deployment is in progress. SRE engineers constantly try to reduce downtime, however, and they use new techniques

called zero downtime deployment. SRE engineers can decide on the required change or fix and immediately trigger the

pipeline to release the change from dev to production.

SRE engineers do not follow a bureaucratic approach in which a certain number of parties have to be involved in the

production environment's decisions, and there is no hierarchy in place. The SRE approach takes risk, but it creates an

autonomous team that can decide and act fast on incidents.

However, this doesn’t mean that the other parties are never involved or informed properly. Here are some examples of practical

situations where communication should happen:

• Suppose there is something to be done in a high priority which disrupts the production applications and services. In that

case, a client should be informed before, during, and after the operation to ensure everything is under control related to

live operations, data loss, and so on.

• Suppose there is a rollback operation and an old version of an application or a service should be installed. In that case, the

development team should be informed and involved to ensure there is no problem with other services after this rollback.

• Suppose any process, deployment step, or even any line of code which developers write should be changed by SRE

developers in an emergency. In that case, the development team should be informed afterward to make sure they are

aware of these changes and the reasons they were made.

SRE Proactively Trains Team Members on CI/CD
When we talk about quality, we should be able to turn the quality into numbers. Then, we can quantify the quality with some

metrics. I remember when we created our first-ever production dashboard out of application performance. Most people did

not get what we were doing. As we rolled it out, however, it was visible how much memory and disk space were being used by

every production server. After a couple of weeks, non-operational people started to notify us about the application quality. They

simply looked at the dashboard and spotted some warnings.

Since it was easy to understand, they were able to get the problem quickly — and even took initiative to make sure we were

aware of it. This is an example of how we managed to create some basic metrics and define a baseline to check the production

performance. Before having an extensive monitoring dashboard, you can still get better control over your platforms with basic

monitoring metrics. Here are some common metrics you can create if you are still new to this area:

• If you have IaaS, you can start with monitoring your infrastructure availability— resources like your CPU, memory, and

hard disk. These areas are the most common troublemakers, so you can identify issues before they become a disaster.

• If you have some web services running, you can start with monitoring your service availability by checking the endpoint.

Additionally, you can monitor the HTTP errors to understand what is happening with requests.

PAGE 45DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

The SRE approach is strongly against creating a silo. SRE engineers work closely with developers, testers, and anyone who

impacts the software project. This collaboration creates a strong knowledge-sharing loop in which most team members can

pick different tasks and responsibilities. Moreover, this approach creates new SRE engineers from developers and testers

interested in understanding application design, implementation, and operations.

Common Misconceptions About SRE
When any methodology is used incorrectly, it might not be as useful or effective as when it’s properly implemented. The same

goes for SRE, a new version of DevOps. When an organization that is not mature enough in DevOps considers implementing

SRE, wrong perceptions can lead to much confusion. After years of doing DevOps and SRE activities, I learned that you need

to have a good understanding of DevOps to become a good SRE. The reason is that DevOps is the predecessor of SRE, and to

identify why we are doing things in an SRE way, you need to know the history behind that.

Another common misunderstanding happens when companies see the SRE as just another expert in handling incidents and

operations. Let’s refer to the Google definition of SRE. We learn that SRE is considered a team made up of different experts

who can build, run, and maintain application services autonomously. SRE goes one step further than DevOps and takes all

responsibilities. This way, you have full control of your SDLC and have one team that communicates, decides, and implements

things very quickly. Having a good understanding of the context of SRE is key to making sure you can implement it properly.

Bottom Line
The SRE approach is the latest advancement of the DevOps way of working. It offers best practices to keep all services and

applications running reliably. SRE works smoothly with CI/CD pipelines; you can constantly see where you are and what can

be improved in your SDLC. This keeps you on track at all times, and it helps you avoid taking any success for granted. SRE

engineers are the frontrunners on these efforts — they bring this mindset to an organization. SRE engineers define their KPIs

based on customer requirements and what makes the platforms reliable. These requirements can change every day, so SRE

engineers help teams adapt to these changes while the production reliability stays intact.

Alireza Chegini, Senior DevOps Engineer at S-RM
@allirreza on DZone | @alirezachegini on LinkedIn | codingascreating.com

Alireza is a software engineer with more than 20 years of experience in software development. He
started his career as a software developer, and in recent years he transitioned into DevOps practices.
Currently, he is helping companies and organizations move away from traditional development
workflows and embrace a DevOps culture. Additionally, Alireza is coaching organizations as Azure
Specialists in their migration journey to the public cloud.

https://dzone.com/users/3142516/allirreza.html
https://www.linkedin.com/in/alirezachegini/
https://codingascreating.com/

PAGE 46DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

CONTRIBUTOR INSIGHTS

Continuous integration/continuous deployment (CI/CD) pipelines have matured from new forms of automation to mission-

critical systems. DevOps teams rely on pipelines to deliver value to their customers by tightening developer feedback loops

and standardizing processes. When a system becomes more valuable and important, it tends to increase in complexity. It must

support more users, be more reliable, and perform, despite the increased load. Soon the CI/CD system built for one team has

grown to support every business line in the firm.

Should your CI/CD system be self-hosted or a managed service? You may be asking yourself this as you review an existing

CI/CD system or prepare to build a new one. Which approach will work best for you?

Managing Your Systems vs. Outsourcing to SaaS
When you outsource an internal system to a managed service provider, you’re giving up control over the systems the

application runs on. Sometimes this is an advantage. Having fewer systems can mean reduced headaches, less capital outlay,

and the potential for a smaller headcount. But it also means relying on someone else to do the work. Let’s compare four key

systems support areas:

Table 1

SELF-HOSTED VS. MANAGED SERVICES: ADVANTAGES AND DISADVANTAGES

Self-Hosted Managed Services

Cross-team

coordination
Supporting CI/CD systems requires cross-
team coordination for applying updates,
system upgrades, and repairs.

Coordination is limited to what’s required to share
pipelines and artifacts between teams.

Scalability You’re responsible for monitoring systems,
planning upgrades, and capital investment.

Scaling up means adding users or moving to a
high service tier. This still requires more spending.

Software updates and

maintenance
You’re responsible for tracking and applying
software updates.

The managed provider is responsible for software
updates.

Hardware break/

fix support
You’re responsible for keeping systems
running and fixing them when they break.

The managed provider is responsible for
maintaining systems.

Security
All of your IT infrastructures must be secure, but CI/CD holds your application code and configs as well as information about

the users that can deploy them. It needs the highest level of security you have to offer.

SECURITY ADVANTAGES AND RISKS OF MANAGED SERVICES
When you outsource an application, you’re outsourcing the security with it. You’re not responsible for doing the work, but

you’re still accountable for the outcome. Even if the cloud provider is authenticating users against your directory services,

you’re trusting them with enforcing access to some of your most precious data. Should you?

Managed vs. Self-Hosted
CI/CD

By Eric Goebelbecker, DevRel at HitSubscribe

PAGE 47DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

“Cloud” is another word for “someone else’s computer,” and “managed services” means “on the Internet.” Your staff will have

convenient access from anywhere, regardless of whether your offices are open or accessible. This is a tremendous convenience

that also has disaster recovery benefits. But it increases your attack surface and puts your fate in the hands of an external

company.

SECURITY ADVANTAGES AND RISKS OF SELF-HOSTED
If you keep your CI/CD system in-house, you’re responsible for its security. You know your system’s requirements and your

user community, which may be an advantage. But maybe a managed provider has more security knowledge and experience

on their staff than you do. One thing you can do is keep your CI/CD system off the Internet. You can lock it down so it’s only

accessible from behind a firewall, or even go as far as isolating to internal networks and your VDI infrastructure. But that’s no

guarantee of safety, and you’ll be giving up the convenience that an Internet-accessible managed service offers.

Regardless of where you locate your CI/CD, you still need to worry about supply-chain attacks. Many managed CI/CD

providers offer vulnerability scanning and penetration testing solutions. If you keep your pipelines in-house, you’re taking on

responsibilities for that, too.

Control
When someone else manages your CI/CD pipeline, you have less control. Is it a worthwhile tradeoff? How much are you willing

to relinquish? Will ceding control to a managed service hamper how you use your pipelines? What benefits do you receive in

return for ceding some control?

ADVANTAGES TO CONTROLLING YOUR RESOURCES
When you’re in control, you’re responsible for defining all policies regarding how your CI/CD systems are used, run, and

administered. For example, if your development teams want custom plugins for your CI/CD platform, the decision is yours.

A managed provider may only allow approved plugins or have an onerous approval process that holds up progress. You also

control your destiny regarding where you put your CI/CD servers and source code.

As we covered in the security section, managed services are accessible via the Internet:

• The managed CI/CD system needs to access your source control repositories. For some providers, your code needs to be

in a managed repository like GitHub, GitLab, or Stash. Is this compatible with your intellectual property policies? Keeping

your CI/CD in-house means you can keep your code there, too.

• You may be able to retain control over your code by opening access to your private repos instead of moving to a managed

solution, but this opens up new risks.

• Your users will need to manage a new set of credentials for the managed service, or you’ll need to expose your directory

services to the provider.

PUTTING YOUR DESTINY IN SOMEONE ELSE’S HANDS
What happens when someone else controls your CI/CD systems?

• The managed providers control their pricing.

• The vendor is responsible for protecting your data and maintaining redundant systems and up-to-date backups.

• Connections between cloud CI/CD providers and cloud source control providers are secure and easy to manage.

• Most cloud vendors integrate easily with public OAuth providers like Google and GitHub, so it’s easy to integrate

cloud services.

• Your requirements will change, and so will the vendor. How much effort will it take to move your pipeline back in-house

or to another vendor if it becomes necessary?

• Similarly, what happens when you outgrow the vendor?

• Does the vendor support all the integrations you need? Will they keep up with new products?

PAGE 48DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

Cost
We’ve alluded to costs and potential cost-savings several times so far. Let’s look at how you should evaluate managed vs. self-

hosted CI/CD costs. Managed CI/CD systems are priced per user and per minute for CI/CD operations. You probably have a

handle on how many users you’ll have, but how can you estimate minutes? What happens when a process spins out of control?

Accurately estimating month-to-month costs is difficult at best. Large enterprises may have some leverage to keep costs under

control by negotiating flat pricing based on a minimum spend. Smaller companies may not.

Self-hosted CI/CD means you’re responsible for licensing the software required to run your systems. While the major CI/CD

platforms are open source, the more popular and useful enterprise editions have licenses for which you will be required to

pay. Then there’s also the cost of buying and maintaining hardware or cloud systems. Hardware requires a capital investment,

colocation space (including power), and maintenance. Cloud systems have a monthly fee, and while there’s no hardware to

maintain, they must be monitored, updated, and fixed from time to time.

Conclusion
As cloud computing grows more prevalent, managed solutions for core functions like CI/CD become more attractive. In many

cases, moving to managed services allows development teams to focus on their application domain, get more done, and

perhaps even save some money. But choosing between managed or self-hosted CI/CD is difficult because there are many

moving parts. Which option is best depends on your specific situation.

The wrong call can waste a great deal of time, effort, and money. Before you decide which path to take, it’s critical that you

consider all of the tradeoffs and advantages of both approaches.

Eric Goebelbecker, DevRel at HitSubscribe
@egoebelbecker on DZone and Twitter | @ericgoebelbecker on LinkedIn | ericgoebelbecker.com

For nearly 30 years, Eric worked a developer and systems engineer at a variety of Wall Street market
data and trading firms. Now he spends his time writing about technology and science fiction, training
dogs, and cycling.

https://dzone.com/users/3395976/egoebelbecker.html
https://twitter.com/egoebelbecker
https://www.linkedin.com/in/ericgoebelbecker/
https://ericgoebelbecker.com/

PAGE 49DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

CONTRIBUTOR INSIGHTS

Software firms have long relied on a DevOps approach to enhance agility and collaboration in software delivery. CI/CD pipelines

automate processes in the software development lifecycle (SDLC) to enable seamless integration and delivery of new features.

While CI/CD pipelines enhance software development through automation and agility, they involve integrating numerous tools

and services, which can introduce security gaps. Identifying and remediating these security gaps is key to ensuring secure

CI/CD practices. This article presents a general overview of what you need to know as you secure your CI/CD pipeline.

Introduction to CI/CD Security
While CI/CD pipelines enhance the efficiency of software development and delivery through automation, the core stages of the

pipeline don't include security by default. CI/CD security is the set of practices aimed at identifying and fixing vulnerabilities

without significantly slowing down processes in the pipeline. CI/CD security practices mainly involve injecting penetration tests

and active security audits to help reduce bottlenecks caused by late handoffs to security and QA teams. Secure CI/CD pipelines

enable software teams to automate security for multiple deployment environments and layers of the SDLC, enforcing agility.

COMMON SECURITY THREATS FOR A CI/CD PIPELINE
Each organization's CI/CD pipeline has unique characteristics based on the business case, workload, and tech stack used. As a

result, the implementation of CI/CD security differs based on use case. There are, however, security risks that are common to

almost all pipelines, which warrant similar identification and remediation approaches. These risks include:

UNAUTHORIZED ACCESS TO CODE REGISTRIES
CI/CD operations rely on shared repositories to enable collaboration, configuration management, updates, and version control.

All source code and configuration files reside on the Git repository as a single source of truth. Public repositories are popular in

modern CI/CD pipelines since they reduce development costs and time. These repositories pose a security threat, however, as

developers publish source code from their private machines into public, shared folders. Attackers can search through open-

source registries as a reconnaissance technique and leverage the data gained for targeted phishing, reverse engineering, and

remote code execution attacks.

INSECURE CODE
The requirements of rapid development and delivery in CI/CD pipelines have led to the increasing use of open-source, third-

party integrations. Some teams may import third-party integrations into the deployment environment without properly

scanning the source code for security gaps. These integrations can introduce vulnerabilities into the CI/CD pipeline. Developers

may also fail to follow best practices for code security, which increases the attack surface. Common code vulnerabilities include

format string vulnerabilities, buffer overflows, improper error handling, and canonicalization issues, among others.

IMPROPER SECRETS MANAGEMENT
Secrets aid in managing access to data and resources within the CI/CD pipeline. These include passwords, tokens, API keys,

and other authentication credentials used to validate users accessing sensitive systems in the pipeline. Exposed secrets can,

therefore, grant an attacker control over part or all of the CI/CD processes. Secret management misconfigurations include

hard-coded secrets, storing secrets in public cloud environments, and manual secrets management, among others.

Securing Your CI/CD
Pipeline
Common CI/CD Security Challenges and Advanced Strategies
to Mitigate Threats

By Sudip Sengupta, Technical Writer at Javelynn

PAGE 50DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

SHIFTING SECURITY LEFT
In older pipelines, security was often a final step, contributing to deployment bottlenecks. Today, best practices require

integrating security controls earlier in the SDLC, otherwise known as "shift security." Shifting left involves implementing

security checks in every layer of the CI/CD pipeline, enabling more accurate threat detection in every step. The goal is to

remove friction between DevOps and security teams, enhancing efficiency in software development and ensuring robust

security practices.

KEY CONSIDERATIONS FOR ADOPTING A CI/CD SECURITY TOOL
Some factors to consider when selecting a tool to secure the CI/CD pipeline include:

• Scanning coverage

• Ownership costs and licensing terms

• Maintenance and configuration effort required

• Scalability

• Integration with existing development and security stack

Administering Security on a CI/CD Pipeline
With the changing threat landscape, administering security is one of the most crucial aspects of a CI/CD pipeline. The first step

in securing DevOps workflows starts with assessing how you can apply the principles of DevSecOps to your CI/CD pipelines.

One of the goals of a diligent assessment is to identify tools and strategies to administer robust security.

BEST PRACTICES TO SECURE A CI/CD PIPELINE
To fully realize the benefits of integrating security directly into the software lifecycle, teams should:

AVOID HARDCODING SECRETS IN CONFIG FILES AND CI/CD BUILD TOOLS
Secrets are often required at various stages of the SDLC. An easy way to provide these secrets is to reference them as

environment variables in configuration files and manifests. Anyone who can access these templates and files can extract

credential information from these files, potentially leading to a data breach. Software teams should use tools that encrypt,

store, and enable the central management of secrets to keep credential data away from malicious users. To securely manage

and distribute secrets, administrators should perform encryption at rest before storing them in the ETCD server.

First, encode the secrets in Base64 format as shown below:

$ username=$(echo -n "admin" | base64)

$ password=$(echo -n "a62fjbd37942dcs" | base64)

Define the secrets in a YAML file:

echo "apiVersion: v1
> kind: Secret
> metadata:
> name: test-secret
> type: Opaque
> data:
> username: $username
> password: $password" >> secret.yaml

Next, once secrets are created, you can use those to be applied into a Kubernetes pod. This can be done by creating a .yaml file,

secret-env.yaml, whose environment variables are populated with data from the secret. The file's specs would be similar to

the following:

apiVersion: v1
kind: Pod

Code continues on next page

PAGE 51DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

metadata:
 name: secret-env-pod
spec:
 containers:
 - name: mycontainer
 image: alpine:latest
 command: ["sleep", "9999"]
 env:
 - name: SECRET_USERNAME
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: username
 - name: SECRET_PASSWORD
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: password
 restartPolicy: Never

When populating environment variables, Kubernetes decodes Base64 values. These environment variables can be used in all

Kubernetes API objects, eliminating the need to hardcode secret data.

ENFORCE ACCESS CONTROLS FOR CI/CD BUILD TOOLS
DevOps teams should implement authentication and authorization mechanisms to control the entities that can access specific

processes and tools within the CI/CD pipeline. The teams should enforce the principle of least privileges to ensure resource

access is only granted to those who absolutely need it. Data within the CI/CD pipeline should also be secured using tokens,

access keys, and passwords to prevent the addition of malicious payloads into the pipeline.

ESTABLISH AUTHENTICATION MECHANISMS FOR SOURCE CONTROL
Version control repositories (most often in Git) are a must-have for CI/CD pipelines. They foster collaboration and enable

continuous deployment of features. Since the Git repository contains the application's source code, Infrastructure-as-Code

manifests, and intellectual property, a vulnerability in source control grants attackers access into the application's design and

implementation logic. Access to Git repositories should be secured using multi-factor authentication since they are a high-

value target for hackers. Teams can also prevent accidental branches and commits using the .gitignore file, and educate

developers on Git best practices.

ENSURE CONFIGURATION PARITY ACROSS ALL ENVIRONMENTS IN THE PIPELINE
DevOps teams should ensure that all environments (development, testing, production, and so on) are configured similarly.

With configuration parity, QA teams can accurately detect security issues during testing as these issues exist on all

environment configurations. This parity can be achieved using virtualization and abstraction technologies like containers and

Infrastructure-as-Code declarations.

CONFIGURE ROLLBACK CAPABILITIES
It is common for security and QA teams to uncover security issues after application updates or deployments. This requires the

administrators to roll back (revert) the deployment to an earlier version. The deployment should be configured to achieve a

graceful rollback that eliminates the security issue until the development team has worked on it. Rollbacks are best achieved

by retaining artifacts of an older version until the new deployment is approved for production.

IMPLEMENT CONTINUOUS VULNERABILITY SCANNING AND MONITORING
It is important to monitor and test every resource in the CI/CD pipeline. Use a vulnerability scanning solution to test application

code, environment configurations, and deployment scripts against a database of known vulnerabilities to eliminate potential

attack vectors. These scanning and monitoring tools should be deployed across the entire SDLC to uncover vulnerabilities as

soon as they occur to prevent exploits.

PAGE 52DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

CLEAN UP REDUNDANT RESOURCES AND UTILITIES FREQUENTLY
CI/CD pipelines are typically built with immutable infrastructure, which run specific processes and then terminate. DevOps

teams should ensure all temporary resources such as containers, services, and virtual machines are cleaned up after

termination. Attackers could use their open ports to gain initial entry into the deployment environment, so it's important to

properly manage these resources to reduce the security gap.

LAYERS OF CI/CD SECURITY
Administering CI/CD security requires a comprehensive, multi-layered approach to strengthen the defense across every point

on the pipeline. These layers of security include:

Figure 1 : Security layers in a secure CI/CD pipeline

VULNERABILITY SCANNING
Vulnerability scanning involves using databases of known threats to identify and remediate security gaps in the entire CI/

CD pipeline. Automated tests scan the application and deployment environment to identify and classify weaknesses in code,

infrastructure, and third-party services.

STATIC SECURITY TESTING
These are software composition analysis techniques aimed at identifying potential vulnerabilities in code written by internal

development teams. Security teams often use these tools to develop test cases to pinpoint insecure code vulnerabilities before

deploying new application builds.

RUNTIME SECURITY
This layer relies on runtime application self-protection (RASP) tools to detect security threats for applications in live production

environments. These tools scan configuration templates and continuously test the state of the deployment environment, then

use a comparison to identify and respond to any runtime threats.

AUDITING AND MONITORING
Application and infrastructure logs continuously track and store application and deployment data. Auditing involves analyzing

these logs to infer patterns that can be used to improve the application's security posture. Monitoring is the deployment of

diagnostic tools that analyze metrics to gain an understanding of most system-related issues.

Constant auditing and monitoring help teams build context and predict baseline user behavior. Security teams can identify

security threats by analyzing user actions that deviate from the established baseline.

PAGE 53DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

Conclusion
As code that runs in a CI/CD pipeline can be executed by anyone with access to the pipeline's source code repository or

container registry, DevOps workflows are known to introduce inherent security challenges. A recent survey projected that

roughly 55 percent of organizations delay application rollouts due to security concerns. While a DevOps framework enables

enhanced collaboration and automation, organizations must adopt a continuous security model that considers advanced

strategies and tools to ensure comprehensive security across all layers of a CI/CD pipeline.

Sudip Sengupta, Technical Writer at Javelynn
@ssengupta3 on DZone | @ssengupta3 on LinkedIn | www.javelynn.com

Sudip Sengupta is a TOGAF Certified Solutions Architect with more than 15 years of experience working
for global majors such as CSC, Hewlett Packard Enterprise, and DXC Technology. Sudip now works as a
full-time tech writer, focusing on Cloud, DevOps, SaaS, and cybersecurity. When not writing or reading,
he's likely on the squash court or playing chess.

https://www.javelynn.com/cloud/kubernetes-adoption-security-and-market-trends-report-2021/
https://dzone.com/users/4337650/ssengupta3.html
https://www.linkedin.com/in/ssengupta3/
http://www.javelynn.com/

PAGE 54DZONE TREND REPORT | DEVOPS: CI/CD AND APPLICATION RELEASE ORCHESTRATION

ADDITIONAL RESOURCES

TREND REPORTS

CI/CD: Automation for Reliable Software Delivery
In 2020, DevOps became more crucial than ever as many

companies moved to distributed work and continued

to accelerate their push toward cloud-native and hybrid

infrastructures. This Trend Report examines how these

changes have impacted development teams across the

globe and dives deeper into the latest DevOps practices that

are advancing the industry. You'll find observations from

our original research and insights from DZone contributors

on topics including IaC, AI and ML in DevOps, CI/CD security

challenges, and more!

PODCASTS

Ship It! DevOps, Infra, Cloud Native
This podcast's goal is to get your ideas out

into the world. Gerhard Lazu and friends

explore topics that cover all things code, ops,

and infrastructure.

The Pipeline: All Things CD & DevOps
The Pipeline, created and hosted by Jacqueline

Salinas, covers a range of topics that are

centered around CD and DevOps. Hear from

industry experts, innovators, and thought

leaders in order to gain more knowledge surrounding the

CD and DevOps ecosystem.

The Humans of DevOps
What helps organizations achieve their

goals, adapt and respond to challenges, and

compete in a disruptive, digital landscape?

People! This podcast showcases the human

element of DevOps and includes episodes on building a

healthy team culture, overcoming disconnected silos in

remote teams, and much more!

DevOps and Docker Talk
Host Bret Fisher offers a catch-all podcast that

covers Q&As from live shows, guest interviews,

and chats with industry friends — all centered

around cloud-native and DevOps topics like

container tools, cloud management, and sysadmin.

Diving Deeper Into
DevOps and CI/CD
BOOKS

The Phoenix Project: A Novel About IT,
DevOps, and Helping Your Business Win
By Gene Kim, Kevin Behr, and George Spafford

In this best-selling novel about DevOps,

follow fictional character Bill Palmer on his

journey from Director of IT operations to

sudden Vice President of Operations. Learn

lessons on tearing down silos between operations and

development teams — and see why security should always

be put first. Not only is this book a great tool for DevOps

teams, but it can benefit anyone who wants their business

to be successful.

Accelerate: The Science of Lean Software
and DevOps – Building and Scaling High […]
By Nicole Forsgren, Jez Humble, and Gene Kim

Does the performance of delivery teams

actually drive business value? This book

presents research and statistical methods that

can help management at any level learn how

to measure software delivery performance and explores how

it can provide a competitive advantage to your company.

REFCARDS

Getting Started With GitHub Actions
Integrating CI and CD concepts into your repository enables

you to further reap their benefits, and the most prominent

option available is GitHub. In this Refcard, readers will

learn the key concepts of GitHub Actions, as well as how to

create automated workflows (or CI/CD pipelines) using text-

based configurations that are stored directly within their

GitHub repository.

Introduction to DevSecOps
DevSecOps enables you to reach higher security standards

while observing DevOps principles. In this Refcard, you will

explore how to get started with DevSecOps, covering key

themes, pitfalls to avoid, crucial steps to begin your journey,

and guidance for choosing security tools and technologies

to build your DevSecOps pipeline.

https://dzone.com/trendreports/cicd-amp-release-automation
https://dzone.com/trendreports/cicd-amp-release-automation
https://open.spotify.com/show/522cBqe5n1lRER8I1T2tq5
https://cdeliveryfdn.buzzsprout.com/
https://podcasts.apple.com/us/podcast/the-humans-of-devops-podcast-series/id1478025522
https://podcast.bretfisher.com/
https://itrevolution.com/the-phoenix-project/
https://itrevolution.com/the-phoenix-project/
https://itrevolution.com/accelerate-book/
https://itrevolution.com/accelerate-book/
https://dzone.com/refcardz/getting-started-with-github-actions
https://dzone.com/refcardz/getting-started-with-github-actions
https://dzone.com/refcardz/introduction-to-devsecops
https://dzone.com/refcardz/introduction-to-devsecops
https://open.spotify.com/show/522cBqe5n1lRER8I1T2tq5
https://cdeliveryfdn.buzzsprout.com/
https://itrevolution.com/accelerate-book/
https://itrevolution.com/the-phoenix-project/
https://podcasts.apple.com/us/podcast/the-humans-of-devops-podcast-series/id1478025522
https://podcast.bretfisher.com/

