
Logging in

B Y C H R I S C O O N E Y

Kubernetes

<PART 1>

<PART 2>

<PART 3>

<PART 4>

<PART 5>

<PART 6>

KUBERNETES 101

THE INSIGHTS YOU’LL GAIN FROM THIS EBOOK
WHAT IS CONTAINER ORCHESTRATION, AND WHY IS KUBERNETES SO GOOD AT IT?
WHAT IS OBSERVABILITY, AND WHY DO YOU NEED OBSERVABLE LOGS IN KUBERNETES?

Logs provide that insight, but you need to work for it

UNLOCKING THE POTENTIAL IN YOUR LOGS

LOGS ARE VERY INFORMATION-RICH
ELASTICSEARCH AND WHY IT HAS BECOME THE GO-TO FOR MODERN LOGGING

THE MOST COMMON DEPLOYMENT OPTIONS IN KUBERNETES

HELM CHARTS AND WHY THEY’RE AMAZING
OPERATORS AND WHY THEY’RE BECOMING THE STANDARD

RUNNING ELASTICSEARCH ON KUBERNETES

PREREQUISITES
ELASTICSEARCH DEPLOYMENTS, TWO WAYS

Direct install using Helm

Installing using the ECK Operator

Define your credentials

And now to declare the new cluster

The operator also presents a read API

 What about changing the version?

LET’S PUT KIBANA IN FRONT OF YOUR CLUSTER

SHIPPING YOUR LOGS INTO ELASTICSEARCH

SET UP A SIMPLE INDEX PATTERN
A FULL PIPELINE

So can I start shipping logs?

HOW TO GET THE MOST OUT OF YOUR LOGS

LOG IN A STRUCTURED FORMAT LIKE JSON
USE A MAPPED DIAGNOSTIC CONTEXT
SHOULD YOU BUILD ALL OF THIS YOURSELF?

<PART 1>

KUBERNETES
101

<PART 1>

//4

KUBERNETES 101
Kubernetes has become the de-facto standard for container
orchestration. In July 2021, Red Hat found that out of 500 DevOps
capable organizations surveyed, 88% were using Kubernetes. Where
once, there was stiff competition between Kubernetes, Docker
Swarm, Mesos Marathon, and others, now only Kubernetes (K8s)
remains. It’s easy to see why Kubernetes has become so popular.

There are many different ways to operate a Kubernetes cluster, and all
of them have their benefits and drawbacks. In the world of logging and
observability, these drawbacks can be the difference between operational
success and total disaster. This eBook is all about helping you set some
great foundations for your Kubernetes logging solution, using best
practices from around the Kubernetes and cloud-native community.

The insights you’ll gain from this eBook
Let’s dive into the world of Kubernetes logging: the best practices,
common pitfalls, and the quick wins that you can exploit to achieve
true observability within your cluster rapidly. This eBook will show you
how to employ common Kubernetes tools, patterns, and practices to
achieve logging success, and it will regularly stop to inspect why a given
approach has won over all others.

https://www.redhat.com/en/resources/kubernetes-adoption-security-market-trends-2021-overview

<PART 1>

KUBERNETES 101

//5

By the end of this book, you’ll know:

	➜ How to deploy an Elasticsearch cluster to Kubernetes

	➜ How to get your logs from your applications into Elasticsearch

	➜ The key values to monitor in your Elasticsearch cluster and the

operational challenges you may encounter while you’re running

Elasticsearch

	➜ The engineering practices that will unlock the true

power of your logs

What is container orchestration,
and why is Kubernetes so good at it?
When Docker became the standard mechanism for packaging and
running applications, it became easier than ever to get your code
deployed into production. The beauty of containerization is that your
application can run in its own little environment, and that environment
doesn’t need to cater for anything else.

But the specialization of containers also meant that the sheer volume of
containers increased. Once you have deployed 10 applications on the
same virtual machine (VM) and are only worried about configuring the
base VM, you now have 10 separate docker containers that look and
behave a little like miniature VMs. Container orchestration is necessary to
help lighten the load. Rather than manually monitoring and fixing 5,10,
or 1,000 docker containers, you allow the most common tasks to be
automatically handled by your container orchestration system.

<PART 1>

KUBERNETES 101

//6

K8s does this very well. If a long-running container dies, Kubernetes will
restart it. If a job fails, it will rerun it. If you can’t work out which VM to
host your new container, don’t worry, Kubernetes automatically tracks
and schedules containers to an appropriate server. Organizations were
regularly building home-grown mechanisms to solve these problems, but
in the end, K8s have demonstrated their superiority.

What is Observability, and why do
you need observable logs in Kubernetes?
Kubernetes is a complex element of engineering. The picture can only
grow more confusing when you add your software. Containers running in
a Kubernetes cluster may be restarted at any time. The servers that host
them may be taken down for maintenance, terminated in a scale-down
event, or simply fail. Rather than a single, static architecture that aims to
keep everything running by changing nothing, Kubernetes is constantly
optimizing your environment.

This natural state of change comes with significant benefits. If your
servers are constantly cycling, you know that your disaster recovery will
work in an actual server outage. However, it can also make for a tricky
system to operate. Is a server going down because Kubernetes has
decided it no longer needs it or is something wrong with the instance?
Why has the control plane suddenly added 5 new nodes into the cluster?
Answering these questions requires more profound insight.

<PART 1>

KUBERNETES 101

//7

LOGS PROVIDE THAT INSIGHT, BUT YOU NEED TO WORK FOR IT
The word “logs” immediately conjures up images of using the SSH
command to jump onto a server and using cat or less to read the contents
of an obscurely named .txt file. This paradigm simply doesn’t work in
the world of microservices and doesn’t hold up in the shifting sands of a
Kubernetes cluster.

Kubernetes pods (container’s collections) regularly scale up, down, and
move between servers. When they move, their logs move with them, so
relying on the local disk of a stateless pod means you have no defined
retention period for your logs. It also means that you have no central view
of what is happening in your cluster.

This is why log collection has become the ubiquitous practice that it is
today. Rather than hopping between pods and hoping that the application
log files are intact, developers can store them in a single place that offers
fine-grained control over retention, visualization, and insight. It also allows
engineers to query their logs and present them in many different ways,
which is the essential capability of an observable logging platform.

It’s not enough to pull back the logs for a single instance. You need to pull
logs across multiple applications, VMs, and Kubernetes clusters. Then,
once you have the data, you need to slice it and join it however you see
fit. As your architecture grows, the ability to simply know the state of your
cluster will become indispensable, and logs are critical here, enabling you
to harvest the best possible insight and respond to the sublime chaos of a
working Kubernetes cluster.

https://www.ssh.com/academy/ssh/command
https://www.ssh.com/academy/ssh/command

<PART 2>

UNLOCKING
THE POTENTIAL
IN YOUR LOGS

<PART 2>

//9

UNLOCKING THE
POTENTIAL IN YOUR LOGS
When working with Kubernetes, operators often wonder why
something happened. If Kubernetes scales up another pod, it may
be clear why from the container metrics of the other pods. For
example, if they’re all beginning to run out of memory, it is safe
to infer that this new instance has been brought in to increase the
available memory for workloads.

Metrics can sometimes give engineers a clear picture of what is
happening, but these same metrics cease to be useful when the
processes aren’t working as they should be. For example, why isn’t a
new pod created when all of my memory is maxed out on my existing
instances? In this case, the answer is likely a combination of many
different metrics. Joining these metrics together in a meaningful way is
hard enough, but finding them in the first place is the true challenge.

For some experienced K8 operators reading this, you may be wondering
why you would even bother with metrics in this situation. The truth is, you
wouldn’t. You’d look at the logs produced by the Kubernetes scheduler,
understand why new pods are not scheduled onto nodes, or you would
look at the logs of the Kubernetes autoscaler and understand why new
virtual machines aren’t created.

https://coralogix.com/blog/the-secret-ingredient-that-converts-metrics-into-insights/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://github.com/kubernetes/autoscaler

<PART 2>

UNLOCKING THE POTENTIAL IN YOUR LOGS

//10

Logs are very information-rich
Rather than trying to piece together the numerical description of an
event, the logs can tell you the intent of an application. Is it trying to scale
up the nodes and failing, or is it not even trying? You might infer this
intent from the metrics, but only the logs can tell you this outright.

The challenge is how to do anything with your logs at scale. In a
microservices architecture, you may have hundreds of different
applications, all producing a myriad of various logs that describe anything
from the number of bytes received in an HTTP request through to a user
making a sale on the site. These logs can be in different formats, use
different terminology, attach different fields, measure the same thing
slightly differently, and more. This means that the immense value of
the logs is obfuscated behind the unstructured nature of the data. The
flexibility and inconsistency of logs are both the source of their value and
their complexity. This calls for a solution that brings you all the tools you
need to index, query, analyze, and visualize your logs. Conveniently, one
such solution has existed for a long time. Elasticsearch.

Elasticsearch and why it has
become the go-to for modern logging
It’s unlikely that you’ll spend more than five minutes reading about
logging before running into Elasticsearch. At its core, Elasticsearch
is a document database that allows you to store, analyze, query, and
visualize large volumes of data. Elasticsearch comes packed with
configurable settings that enable you to fine-tune your cluster precisely
what you need.

<PART 2>

UNLOCKING THE POTENTIAL IN YOUR LOGS

//11

Its popularity is inextricably linked to its ability to rapidly process and
index logs and transform them from opaque lines in a text file into
indexed objects that can be queried and analyzed. It can do this with
millions, even billions, of log lines and, when configured correctly, can be
built to scale to almost any logging challenges.

Later on, this eBook will discuss just how complex managing a high-
performance Elasticsearch cluster is and some of the resources you may
wish to read if you plan on going down this road into production.

https://medium.appbase.io/benchmarking-elasticsearch-1-million-writes-per-sec-bf37e7ca8a4c

THE MOST
COMMON
DEPLOYMENT
OPTIONS IN
KUBERNETES

<PART 3>

app.yaml

app.yaml

app.yaml

deployment.yaml

deployment.yaml

deployment.yaml

service.yaml

service.yaml

service.yaml

....

....

....

/app/config/dev

/app/config/staging

/app/config/production

<PART 3>

//13

THE MOST COMMON DEPLOYMENT
OPTIONS IN KUBERNETES
In the early days of Kubernetes, this choice didn’t exist. You simply
applied a mountain of YAML files to your cluster and tweaked
them until your cluster began to behave itself. Unsurprisingly, the
engineers operating these pioneer clusters were quite unhappy with
this workflow. It was messy and complex and very open to human
error. It was also tough to see why something was broken.

<PART 3>

THE MOST COMMON DEPLOYMENT OPTIONS IN KUBERNETES

//14

You had to scroll through pages of YAML files until the problem presented
itself, and as applications began to scale, this became a more significant
portion of the K8s operator’s time. Not to mention the drift that occurred
between different copies of the duplicate YAML files. Kubernetes had
exposed a great, consistent API, but it had a challenge ahead if it was
going to solve this problem.

Instead, they needed to group YAML files into a single, coherent, logical
object. Necessity drove the creation of a new tool that quickly became the
standard across the Kubernetes world - Helm.

Helm charts and why they’re amazing
Helm charts are a collection of YAML files templated with different values.
For example, you may have a collection of core YAML files describing
how to deploy your application, but their values may differ for different
environments. You may wish to switch on DEBUG level logging in your
development environment but not in your production environment. In the
old world, this would have meant copying and pasting YAML files into
separate folders. You simply apply a different set of values to your YAML
templates with helm.

https://helm.sh/
https://coralogix.com/blog/10-things-that-will-take-your-error-logs-up-a-level/

<PART 3>

THE MOST COMMON DEPLOYMENT OPTIONS IN KUBERNETES

//15

This opened up a new ecosystem of shared Helm charts. Now, rather than
understanding every minor component of a piece of software, you would
quite simply make use of a remote helm chart and install it, configuring
only the parts you were interested in. Therefore, allowing vendors to
release helm charts with best practices baked into the chart itself!

Helm charts made installing 3rd party software on Kubernetes more
straightforward. The community quickly swarmed around Helm and
began using it voraciously, building helm chart after helm chart to solve
common problems and sharing them amongst Kubernetes operators
worldwide.

As with all innovations, though, it had some drawbacks. Now, no one
knew what they were applying to their clusters, which made some
operators and engineers initially uncomfortable. Hidden inside a helm
chart could be a manifest file to deploy a suite of Bitcoin miners to your

app.yaml

/app/config/dev.yaml /app/config/stg.yaml /app/config/prd.yaml

deployment.yaml service.yaml

/app/config

<PART 3>

THE MOST COMMON DEPLOYMENT OPTIONS IN KUBERNETES

//16

cluster. This unknown was enough to drive the more cautious part of the
community away initially, but many have now accepted this risk in recent
years and moved on.

There was, however, one persistent drawback to this approach. This
approach made it easier for vendors to put the “best practice” into their
helm charts so that the software’s layout, once installed, conformed to the
optimum standards. The result removed the burden from the engineer,
but there was still another gap - a chasm began to present itself any time
the software was due for an upgrade.

So far, Helm has managed to abstract the specific YAML files that you
have installed onto your cluster. While it’s a significant step forward, the
industry needed to answer a fundamental question that had existed ever
since one company installed the software from another company. How do
you upgrade without breaking everything?

Operators and why they’re
becoming the standard
Helm charts made it easy to deploy the correct YAML in the
configuration that the vendor recommended, but it didn’t make it easy
to change that YAML once deployed. It simply relied on the Kubernetes
control plane to determine which resources needed to be replaced.
This is fine for totally stateless applications that can be dropped and
redeployed at any time. For applications like Elasticsearch, however,
there is an order of play to a smooth upgrade, and the Kubernetes API
isn’t the correct place to bake this logic.

<PART 3>

THE MOST COMMON DEPLOYMENT OPTIONS IN KUBERNETES

//17

Instead, the industry created operators. Operators are software that runs
on the Kubernetes cluster. They function by listening for signals in the
cluster and making a change when those signals change. These signals
often come in the form of resources declared on the cluster. When a new
resource is declared, the operator will read it and attempt to reconcile the
cluster state with what it sees in the resource. In the context of deploying
new software, this means that rather than installing new software
directly, the operator is deployed (which is typically very straightforward).
You, the engineer, ask that operator to install the software on your behalf.

app.yaml

Elasticsearch-1.yaml

deployment.yaml service.yaml

Elasticsearch
Operator

KUBERNETS CLUSTER

<PART 3>

THE MOST COMMON DEPLOYMENT OPTIONS IN KUBERNETES

//18

The operator architecture has some profound benefits. It allows vendors
to create operators that install the application according to the best
practice and upgrade it in the smoothest possible way. It also further
reduces duplication of effort. Now, not every company needs complex
logic to decide if a deployment went well or not. Instead, it can use the
operator and simply declare which version of the software it wants. The
operator handles the rest.

Naturally, the same people who were a little nervous about Helm charts
were also worried about operators, but in much the same fashion, they’re
marching forward anyway. Operators represent the most advanced
mechanism that Kubernetes users have for deploying 3rd party software,
and they dramatically reduce the operational burden. Operators are a new
technology, so bugs are expected, but the potential wrapped up in this
deployment mechanism is boundless.

RUNNING
ELASTICSEARCH
ON KUBERNETES

<PART 4>

<PART 4>

//20

RUNNING ELASTICSEARCH
ON KUBERNETES
Okay, so this eBook has covered why Elasticsearch is excellent and
why it has become the standard choice for most companies looking
to unlock the power of their logs. Now, you’re left with some
engineering questions.

	➜ What is the best way to deploy Elasticsearch onto your cluster?

	➜ How do you monitor Elasticsearch once you have it?

	➜ How do you make it as easy as possible to upgrade

your Elasticsearch cluster?

	➜ What are the operational concerns with Elasticsearch?

The following chapters will explore the best practices for deploying
Elasticsearch onto a modern Kubernetes cluster. Of course, this will
include an explanation of common engineering patterns in Kubernetes
that lift much of the operational burden away from you and place it into
the hands of your cluster.

<PART 4>

RUNNING ELASTICSEARCH ON KUBERNETES

//21

Prerequisites
You’re going to need a few things if you wish to run through this section
from start to finish:

	➜ A running Kubernetes cluster, which you have sufficient

permissions to install new Kubernetes resources, for example,

Minikube.

	➜ A basic understanding of Kubernetes commands.

	➜ A deployed Helm CLI that is available.

Once these are in place, it’s time to make a choice. Do you install it, or
does your cluster install it on your behalf? To understand this choice, it’s
time to explore a common challenge that engineers face when deciding
on the best way to install a new tool onto Kubernetes.

Elasticsearch deployments, two ways
You have two options when it comes to deploying Elasticsearch onto your
Kubernetes cluster. The first is the simple, direct method - use helm to
install Elasticsearch, which will get you up and running quickly. The second,
and now recommended mechanism, is to use the Elasticsearch operator.

DIRECT INSTALL USING HELM
Installing Elasticsearch via the Helm chart is very straightforward. To
begin, you’ll need first to make the Elastic Helm repository available to
your local Helm installation. So run the following command:
helm repo add elastic https://helm.elastic.co

https://minikube.sigs.k8s.io/docs/
https://kubernetes.io/docs/tutorials/kubernetes-basics/deploy-app/deploy-intro/
https://helm.sh/docs/intro/install/
https://helm.elastic.co

<PART 4>

RUNNING ELASTICSEARCH ON KUBERNETES

//22

This command adds the elastic helm charts to the local helm CLI. It should
output something like this:
“elastic” has been added to your repositories

Next, you need to get your hands on a values file. As you saw earlier, a
values file is used to template the YAML with some common values that
you can tweak. You can do this from the command line, but it’s just as
easy to navigate to one of the example files on Github and download it.

	➜ NOTE: The values file is in no way to be considered “production-

ready.” You and your specific requirements with Elasticsearch

define the production readiness. This book covers some

operational readiness later on.

Once you have your file and you’re ready to go, the next step is simple!
helm install elasticsearch elastic/elasticsearch -f .

/values.yaml

This step will begin the installation process of Elasticsearch. You didn’t
need to inspect any YAML to get this working. You simply declared what
you would like, and the Elasticsearch helm chart did the rest for you. You’ll
see some helpful output from the helm chart:
NAME: elasticsearch

LAST DEPLOYED: Fri Jan 28 07:29:14 2022

NAMESPACE: default

STATUS: deployed

REVISION: 1

https://raw.githubusercontent.com/elastic/helm-charts/master/elasticsearch/examples/minikube/values.yaml

<PART 4>

RUNNING ELASTICSEARCH ON KUBERNETES

//23

	➜ NOTES:

1. Watch all cluster members come up.

 $ kubectl get pods --namespace=default -l app=elasticsearch-

master -w

2. Test cluster health using Helm test.

 $ helm --namespace=default test elasticsearch

These commands in the NOTES section are some simple commands you
can run to watch the installation happen and test the rollout’s success.
You can watch the pods and wait until the master nodes have entered
into a “ready” state. Then simply run the helm test command:
helm --namespace=default test elasticsearch

You should see some output indicating that the pods have been deployed.
Congratulations, you now have a simple Elasticsearch cluster running on
your Kubernetes platform!

Installing using the ECK Operator
Now you’ve done the direct install, let’s look at the difference when you
install via the operator. It’s time to apply two separate things. The first is
the installation for the operator, and the second is the custom resource
that defines what the desired end-state looks like. Finally, this section will
cover a cluster upgrade to see how the operator handles the process.

	➜ NOTE: Version 1.9.1 of the ECK operator has been specified. You

should look to see what the latest stable version of the operator is

before installing.

https://kubernetes.io/docs/concepts/extend-kubernetes/

<PART 4>

RUNNING ELASTICSEARCH ON KUBERNETES

//24

Let’s install the custom resource definitions into your cluster. These
custom resource definitions are the ECK operator’s interface to
communicate with the user. Most operators use custom resources
because it allows them to define their own API.
kubectl create -f https://download.elastic.co/downloads/

eck/1.9.1/crds.yaml

If you want, you can navigate to the URL and inspect the YAML files to
understand better what you’re installing on your cluster. Once the CRDs
are in place, it’s just a case of installing the operator.

Two methods are currently available for installing the operator. The first
is a good, old-fashioned YAML application, which is the recommended
method. The second is to use the experimental helm chart that will allow
you to use all of Helm’s great features for bundling and templating your
YAML. Let’s go with the recommended method right now, but keep track
of the helm chart because it will likely become the standard soon enough.
kubectl apply -f https://download.elastic.co/downloads/

eck/1.9.1/operator.yaml

Once you’ve applied this, you can check the progress by inspecting the
pods, using the following command:
kubectl get pods -n elastic-system

Or you can inspect the logs of the operator with the following command:
kubectl -n elastic-system logs -f statefulset.apps/elastic-

operator

https://download.elastic.co/downloads/eck/1.9.1/crds.yaml
https://download.elastic.co/downloads/eck/1.9.1/crds.yaml
https://www.elastic.co/guide/en/cloud-on-k8s/master/k8s-install-helm.html
https://download.elastic.co/downloads/eck/1.9.1/operator.yaml
https://download.elastic.co/downloads/eck/1.9.1/operator.yaml

<PART 4>

RUNNING ELASTICSEARCH ON KUBERNETES

//25

You’ll know when the operator is healthy because the pod will go into a
ready state. When you get the pods in your elastic-system namespace,
you should see an output that looks something like this:

NAME READY STATUS RESTARTS AGE

elastic-operator-0 1/1 Running 0 96s

Define your credentials
Before you declare your cluster, set a simple password, just for this
section. In the future, you can set something more robust:
export PASS=”whatever-you-like”

kubectl create secret generic my-simple-cluster-es-elastic-user

--from-literal=elastic=${PASS}

This will set the Elasticsearch username to “Elastic” and the password to
a value of your choosing. If you don’t specify this secret, the operator will
declare a random secret for you. While this is quite secure, it can be tricky
to have little control over your cluster’s credentials.

And now to declare the new cluster
Once the operator is installed, declaring a new cluster is straightforward.
You’ll need to define a new custom resource that you apply to the cluster.
This acts as an instruction to the operator. The beauty of this approach is
that you’re not telling the operator how to do it. You’re simply declaring
that you would like a given version of Elasticsearch and letting the
operator handle the details.

<PART 4>

RUNNING ELASTICSEARCH ON KUBERNETES

//26

This YAML will work for a straightforward Elasticsearch cluster, to begin
with, but this can grow into a more complex and finely tuned platform as
you deepen your understanding:
apiVersion: elasticsearch.k8s.elastic.co/v1

kind: Elasticsearch

metadata:

 Name: my-simple-cluster

spec:

 version: 7.16.3

 nodeSets:

 - name: nodes

 count: 1

 config:

 node.store.allow_mmap: false

There are a few details to note here:

	➜ This custom resource is not part of the core Kubernetes API. You

can see this from the apiVersion field. It is an entirely new API

that the ECK operator has installed on the cluster.

	➜ Version 7.16.3 is specified. You should investigate to see the latest

version to avoid falling behind valuable patches.

	➜ The cluber only has a single “node set” with only one node in

there. A production Elasticsearch cluster would almost universally

have three nodes.

<PART 4>

RUNNING ELASTICSEARCH ON KUBERNETES

//27

	➜ This custom resource does NOT need to live in the elastic-

system namespace alongside the operator. This means you can

keep the operator out of the way to avoid any core operator

mistakes. At the same time, you define the best Elasticsearch

cluster for your organization.

	➜ mmap has been disabled, which is a performance optimization that

most production clusters will need.

Write the custom resource text above into a file, and call it cluster.yaml.
Then, it’s simply a case of applying it, as you would with any other YAML file.
kubectl apply -f cluster.yaml

What you’ll see is the custom resource was created. The output won’t
mention anything about any other resources being made. This is because
the operator is handling it for you. Now, if you look at pods in your default
namespace, you’ll see the cluster coming to life:
kubectl get pods

You’ll see that you now have a single pod in your default namespace,
which is the operator dutifully going about its business. Once it’s healthy,
you have a running Elasticsearch cluster.

The operator also presents a read API
The beauty of custom resources is that they can present APIs via the
Kubernetes interface specialized to your question. Try running the
following command:
kubectl get elasticsearch

<PART 4>

RUNNING ELASTICSEARCH ON KUBERNETES

//28

You’ll see that you can get a high-level cluster status check right there in
the CLI, which simply wouldn’t be possible with the direct Helm installation.

What about changing the version?
Changing the version of your cluster is as simple as opening your
cluster.yaml file and changing the version in there. Simply reapply the
YAML with whichever you like. This is the beauty of making use of the
operator. Now, you don’t need to expressly know how the upgrade (or,
indeed, rollback) will be executed. You declare your intention and let the
Kubernetes cluster reconcile.

Let’s try rolling back a patch version just to see what happens. Open up
your file and replace the contents with:
apiVersion: elasticsearch.k8s.elastic.co/v1

kind: Elasticsearch

metadata:

 Name: my-simple-cluster

spec:

 version: 7.16.2

 nodeSets:

 - name: nodes

 count: 1

 config:

 node.store.allow_mmap: false

The version has gone from 7.16.3 to 7.16.2, which is common in
situations where the latest patch has some incompatibility or bug. Now,
as before, it’s simply a case of running:

<PART 4>

RUNNING ELASTICSEARCH ON KUBERNETES

//29

kubectl apply -f cluster.yaml

Your pod will automatically be taken down and replaced with a new pod.
If you rerun the status command, you can see your new version:
> kubectl get elasticsearch

NAME HEALTH NODES VERSION PHASE AGE

my-simple-cluster green 1 7.16.2 Ready 14m

Let’s put Kibana in front of your cluster
Okay, so you have some logs, but you can’t see what’s going on! Let’s get
Kibana deployed into your Kubernetes environment, so that you have a
nice, friendly interface into your cluster. This is where the operator shines.
Create a new file called kibana.yaml and add the following contents:
apiVersion: kibana.k8s.elastic.co/v1

kind: Kibana

metadata:

 name: my-kibana-deployment

spec:

 version: 7.16.3

 count: 1

 elasticsearchRef:

 name: my-simple-cluster

The beauty of this resource is that you don’t need to specify things like
hostnames. You could simply refer to the previous cluster you declared

<PART 4>

RUNNING ELASTICSEARCH ON KUBERNETES

//30

and let the operator pull the details. This further demonstrates why the
operator is a brilliant mechanism for deploying your cluster. Apply this file
and watch the magic happen.
kubectl apply -f kibana.yaml

Now, you can use the Operator API to check the health of your kibana
instance:
kubectl get kibana

Once the health of your Kibana instance goes green, you’re set! If you
don’t have any ingress set up for your cluster, you may need to work out
the best way of viewing this Kibana instance. To quickly verify, you can
set up port forwarding to see the traffic’s output.

First, look for the name of your service in your cluster:
kubectl get svc

Once you have the name of the service, you can set up the port
forwarding. Forward traffic to port 5601 on the container. Port 5601 is
the default HTTP interface for Kibana. For example, with a service called,
my-kibana-deployment-kb-http, the command looks like this:
kubectl port-forward service/my-kibana-deployment-kb-http

5601:5601

This is routing traffic from your local port 5601 to the container port.
Now, if you navigate to this local host, you will see your Kibana instance!

https://localhost:5601

<PART 4>

RUNNING ELASTICSEARCH ON KUBERNETES

//31

	➜ NOTE: You may get an error about invalid certificates because

Kibana uses a self-signed certificate when you install it like

this. This is straightforward to fix and should be done for all

production deployments.

Finally, you’ll simply need to log in with the password you specified earlier
in this section. There you go, a running Kibana instance communicating
with your new Elasticsearch cluster. However, once you explore a little,
you’ll realize that there’s nothing much there to work with! Now, let’s start
sending logs from an application.

https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-tls-certificates.html#k8s-setting-up-your-own-certificate

SHIPPING YOUR
LOGS INTO
ELASTICSEARCH

<PART 5>

<PART 5>

//33

SHIPPING YOUR LOGS
INTO ELASTICSEARCH
So, whichever approach you decide to take, you’ve now got a
working Elasticsearch cluster, sitting in Kubernetes, ready to
index and analyze your logs as you need. You’ve also got a Kibana
instance that will let you visualize your logs. Now, you need to start
sending your logs to your cluster.

There are a few options for sending logs from an application into a
centralized place.

	➜ Application libraries will automatically stream logs to Elasticsearch

	➜ Logging agents can run on the virtual machine that will

automatically pick up docker logs and send them to your cluster

	➜ You can use the Kubernetes DaemonSet to deploy a pod per VM

that will integrate with Elasticsearch

	➜ You can leverage the ECK operator and let it work for you

This section will work with the ECK operator to wire up a Filebeat
instance that will automatically scrape and push your logs into your
Elasticsearch instance. In the same way as deploying Kibana, let’s begin
by creating a local YAML file, filebeat.yaml.

<PART 5>

SHIPPING YOUR LOGS INTO ELASTICSEARCH

//34

apiVersion: beat.k8s.elastic.co/v1beta1

kind: Beat

metadata:

 name: my-filebeat-installation

spec:

 type: filebeat

 version: 7.16.3

 elasticsearchRef:

 name: my-simple-cluster

 config:

 filebeat.inputs:

 - type: container

 paths:

 - /var/log/containers/*.log

 daemonSet:

 podTemplate:

 spec:

 dnsPolicy: ClusterFirstWithHostNet

 hostNetwork: true

 securityContext:

 runAsUser: 0

 containers:

 - name: filebeat

 volumeMounts:

 - name: varlogcontainers

 mountPath: /var/log/containers

 - name: varlogpods

<PART 5>

SHIPPING YOUR LOGS INTO ELASTICSEARCH

//35

 mountPath: /var/log/pods
 - name: varlibdockercontainers

 mountPath: /var/lib/docker/containers

 volumes:

 - name: varlogcontainers

 hostPath:

 path: /var/log/containers

 - name: varlogpods

 hostPath:

 path: /var/log/pods

 - name: varlibdockercontainers

 hostPath:

 path: /var/lib/docker/containers

Let’s break down what this file is declaring:

	➜ Call the custom resource “my-filebeat-installation.”

	➜ Specify in the spec that the type of this Beat resource is filebeat -

this will differentiate it from other beats.

	➜ Request version 7.16.3, in line with the cluster and Kibana.

	➜ Define a DaemonSet inside the resource. You can see that a series

of folders are listed in the DaemonSet definition. These folders

contain the logs that are sent out from Kubernetes containers.

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

<PART 5>

SHIPPING YOUR LOGS INTO ELASTICSEARCH

//36

Once you’re happy, apply this in the same way as everything else:
kubectl apply -f filebeat.yaml

As before, you can simply fetch the high-level status of your filebeat
instance using the Operator API.
kubectl get beat

Wait until that goes green, and you have a pipeline of logs going
straight to your Elasticsearch cluster. Despite having no applications
deployed, you still have operator logs and control plane logs running
on your cluster. This means that logs will already be shipped into your
Elasticsearch instance.

<PART 5>

SHIPPING YOUR LOGS INTO ELASTICSEARCH

//37

Set up a simple Index Pattern
Now you have some logs you’ll need to create an index pattern to query
them. Filebeat would have already made some indices in your cluster,
so your index pattern simply needs to match those. With your port
forwarding open from before, merely navigate to this local host, which
will bring up the management UI and allow you to view your index
patterns.

Click on the button in the top right of the screen to create a new index
pattern. When you click it, you’ll see something like this.

https://localhost:5601/app/management/kibana/indexPattern

<PART 5>

SHIPPING YOUR LOGS INTO ELASTICSEARCH

//38

You can create a simple index pattern that will match all of your filebeat
logs by typing filebeat-* into the name for your index pattern. You should
get a prompt to indicate that this will match your two filebeat indices.
Finally, select the @timestamp field as your timestamp field.

Once you’re happy, click on the button at the bottom of the screen to
create your index pattern. It will take you to the index management
page, where you will see all of your fields. Field mappings are a complex
and exciting practice when operating an Elasticsearch cluster. Simply
navigate back to the Discover section, and you should have your logs
available to you:

https://coralogix.com/tutorials/mapping-statistics/

<PART 5>

SHIPPING YOUR LOGS INTO ELASTICSEARCH

//39

A full pipeline
Congratulations! You have Elasticsearch storing, indexing, and analyzing
your logs. You have Kibana, which allows you to query and view your
logs, and you have Filebeat moving logs from your containers and into
your Elasticsearch cluster. This represents one of the most common
logging configurations on production clusters. While this is not quite a
production setup just yet, you have the raw materials you need to create
a great logging pipeline.

So can I start shipping logs?
It’s not really recommended - configuring Elasticsearch can be a long and
complex process. It will take some time and testing before you get it right.
There are some things that the helm chart has done out of the box for you:

	➜ Configured some master nodes that are great for handling API

requests

	➜ Given some primary resources to each pod. Each pod has 512MB

of memory and can burst up to a single core

	➜ Set up pod anti-affinity meaning that two of your Elasticsearch

pods won’t deploy to the same node

However, what it hasn’t done (and this isn’t an exhaustive list), but should
be considered:

	➜ Performance tested your cluster to make sure it can handle the

sorts of volumes you’re expecting in production

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

<PART 5>

SHIPPING YOUR LOGS INTO ELASTICSEARCH

//40

	➜ Set up authentication so that your information remains secure

	➜ Test your clusters ability to recover from a node outage

	➜ Set up nodes with different roles, such as data, ingest, voting, and

coordinating, depending on what you need from your cluster

Configuring and optimizing Elasticsearch is an eBook all on its own, but
now that you have the basic deployment out of the way, you can now
focus on which configuration is the best for your use case. Here are some
friendly tips:

	➜ Consider the number, size, and type of node you need. It’s not

just about sizing CPU and memory but also about the underlying

instance types for your virtual machines.

	➜ To avoid the split brain problem, you will typically have at least 3

“master eligible” nodes.

	➜ You should think about retention periods on your logs.

https://go.coralogix.com/rs/371-WTH-691/images/eBOOK_03_elastic_v3.pdf

HOW TO GET
THE MOST OUT
OF YOUR LOGS

<PART 6>

<PART 6>

//42

HOW TO GET THE MOST
OUT OF YOUR LOGS
Once you have ingested your logs, you’re going to find that they can
be quite challenging to analyze. This is because lots of systems write
logs in different formats, using different fields, conventions, etc. The
challenge, then, is to work out which conventions you want to put
in place to make your logs as usable and traceable as possible. Here
are some ideas for getting the most out of your application logs.

Log in a structured format like JSON
JSON is a machine-readable, straightforward format that can easily be
indexed and analyzed by Elasticsearch. This consistency makes it much
easier and simpler to manage your logs. Ensuring that your applications
are logging in JSON will encourage engineers to:

	➜ Put all of the necessary information on one logline,

not split over multiple

	➜ Allow for more fine-grained indexing of fields in your logs

	➜ Allow 3rd party tooling to attach values onto your logs,

such as the IP address

Many logging agents support converting logs into JSON before
sending them off to Elasticsearch. This ensures transparency in the
application, but it does somewhat water down the benefits of focusing
on structured logging.

<PART 6>

HOW TO GET THE MOST OUT OF YOUR LOGS

//43

Use a Mapped Diagnostic Context
Automatically inject thread local values into your logs without constantly
adding them into your log lines. So rather than code that looks something
like this:
log.info(“Session started”, { sessionId });

log.info(“Session in progress”, { sessionId });

log.info(“Session finished”, { sessionId });

You can simply set it once and automatically inject it into your logs.
MDC.add({ sessionId })

log.info(“Session started”);

log.info(“Session in progress”);

log.info(“Session finished”);

Some form of MDC library exists in almost every major language, and it
completely removes the need for engineers to remember every key value
in the logs. It also keeps the code nice and clean. This isn’t a significant
overhead with one value, but with 10 or 20, the MDC becomes necessary.

Should you build all of this yourself?
There is a crucial debate whenever a company embarks on its logging
journey or any engineering journey. To build or to buy? Engineers typically
lean towards build, while management sees the utility in purchasing an
off-the-shelf solution.

There are no silver bullet answers for this, but you can begin by asking
generic questions.

<PART 6>

HOW TO GET THE MOST OUT OF YOUR LOGS

//44

	➜ Is this a capability you’re looking to create for your company?

	➜ Does the engineering cost stack up against an existing product’s

upfront or subscription cost?

They are tricky but common questions that need investigating at the
beginning of any complex piece of work, but in the world of logging, there
are some more difficult questions you need to ask:

	➜ Should you impact feature development while you’re building your

Elasticsearch cluster?

	➜ Do you have the skills or the means to hire the right skills to

maintain this cluster once you’ve built it?

	➜ How soon do you need the benefit from your cluster?

These questions are more challenging to answer and require serious
investigation into the motivations behind investing in your observability.
Of course, SaaS alternatives offer managed Elasticsearch instances,
with rich features that include cost optimization, machine learning driven
anomaly detection, alerting, metrics, and much more.

As you’ve seen in this eBook, a new Elasticsearch cluster is not something
that you should approach lightly. It is a commitment of time, effort, and
money. SaaS may be a viable alternative to help you quickly get the value
out of your logs without incurring a brutal upfront cost and potentially even
running at a lower operational price, with more features at your disposal.

//45

TAKE AWAY
We have looked at Kubernetes patterns, how to deploy Elasticsearch,
directly and indirectly, using K8s operators, and how to ship your logs
from your application into your cluster. The final points covered the steps
you need to consider to get to an operationally sound, production-ready
Elasticsearch cluster.

The challenge ahead of you is significant, but with some clever
engineering and creative thinking, you’ll have a battle-ready Elasticsearch
cluster that will give you new insights and drive your operational success
for years to come.

<PART 2>

AWS
LOGGING
BASICSManaged, scaled,

and compliant monitoring,
built for CI/CD

Start solving your
production issues faster

https://signup.coralogix.com
https://land.coralogix.com/demo_request/?utm_source=ebook&utm_medium=ebook&utm_campaign=demo_request

	Table of Content
	Kubernetes 101
	The insights you’ll gain from this eBook
	What is container orchestration, and why is Kubernetes so good at it?
	What is Observability, and why do you need observable logs in Kubernetes?
	Logs provide that insight, but you need to work for it

	Unlocking the potential in your Logs
	Logs are very information-rich
	Elasticsearch and why it has become the go-to for modern logging

	The most common deployment options in Kubernetes
	Helm charts and why they’re amazing
	Operators and why they’re becoming the standard

	Running Elasticsearch on Kubernetes
	Prerequisites
	Elasticsearch deployments, two ways
	Direct install using Helm
	Installing using the ECK Operator
	Define your credentials
	And now to declare the new cluster
	The operator also presents a read API
	What about changing the version?

	Let’s put Kibana in front of your cluster

	Shipping your logs into Elasticsearch
	Set up a simple Index Pattern
	A full pipeline
	So can I start shipping logs?

	How to get the most out of your logs
	Log in a structured format like JSON
	Use a Mapped Diagnostic Context

	Take Away
	Logs provide that insight, but you need to work for it
	Logs are very information-rich
	Kubernetes 101
	The insights you’ll gain from this eBook
	What is container orchestration,
and why is Kubernetes so good at it?
	What is Observability, and why do
you need observable logs in Kubernetes?
	Logs provide that insight, but you need to work for it

	Unlocking the
potential in your Logs
	Logs are very information-rich
	Elasticsearch and why it has
become the go-to for modern logging

	The most common deployment options in Kubernetes
	Helm charts and why they’re amazing
	Operators and why they’re
becoming the standard

	Running Elasticsearch
on Kubernetes
	Prerequisites
	Elasticsearch deployments, two ways
	Direct install using Helm
	Installing using the ECK Operator
	Define your credentials
	And now to declare the new cluster
	The operator also presents a read API
	What about changing the version?

	
Let’s put Kibana in front of your cluster

	Shipping your logs
into Elasticsearch
	Set up a simple Index Pattern
	A full pipeline
	So can I start shipping logs?

	How to get the most
out of your logs
	Log in a structured format like JSON
	Use a Mapped Diagnostic Context
	Should you build all of this yourself?

	PG 94:
	PG 95:
	PG 96:
	PG 98:
	PG 99:
	PG 100:
	PG 101:
	PG 102:
	PG 103:
	PG 104:
	PG 105:
	PG 106:
	PG 107:
	PG 108:
	PG 109:
	PG 1010:
	PG 1011:
	PG 1012:
	PG 1013:
	__MENU top:
	Page 3:
	Page 8:
	Page 12:
	Page 19:
	Page 32:
	Page 41:

	logo 5:
	Page 4:
	Page 5:
	Page 6:
	Page 7:

	__MENU 4:
	Page 4:
	Page 5:
	Page 6:
	Page 7:

	logo 6:
	Page 9:
	Page 10:
	Page 11:

	__MENU 5:
	Page 9:
	Page 10:
	Page 11:

	logo 7:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:

	__MENU 6:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:

	logo 8:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:

	__MENU 7:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:

	logo 9:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 39:
	Page 40:

	__MENU 8:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 39:
	Page 40:

	logo 10:
	Page 42:
	Page 43:
	Page 44:
	Page 45:

	__MENU 9:
	Page 42:
	Page 43:
	Page 44:
	Page 45:

	FREE TRIAL 4:
	Button 2:

